Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T03:32:28.839Z Has data issue: false hasContentIssue false

Synthesis of nickel–chromium–zinc ferrite powders from stainless steel pickling liquors

Published online by Cambridge University Press:  31 January 2011

Aurora López-Delgado
Affiliation:
Departmento de Reciclado de Materiales Centro Nacional de Investigaciones Metalúrgicas (CSIC), Avda. Gregorio del Amo 8, E-28040 Madrid, Spain
Felix A. López*
Affiliation:
Departmento de Reciclado de Materiales Centro Nacional de Investigaciones Metalúrgicas (CSIC), Avda. Gregorio del Amo 8, E-28040 Madrid, Spain
José L. Martín de Vidales
Affiliation:
Facultad de Ciencias (C-VI), UAM, Cantoblanco, E-28049 Madrid, Spain
Eladio Vila
Affiliation:
Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, E-28049 Madrid, Spain
*
a) Address all correspondence to this author. flopez@fresno.csic.es
Get access

Abstract

A low-temperature method was used to synthesize a nickel–chromium–zinc ferrite from stainless steel pickling liquor, a waste product of the steel industry, which is listed in most industrialized countries as a toxic and hazardous waste. This article reports the recovery (as a valuable ferric product) of the total metal content of this waste (namely, iron, chromium, nickel, and minor manganese), by coprecipitation of the multi-ionic solution and Zn2+ (provided by ZnO) with 1 M n-butylamine at room temperature. The spinel-type ferrite produced was characterized by x-ray diffraction, thermogravimetric analysis and differential scanning calorimetry, and scanning electron microscopy. Its recorded magnetization of 2600 emu cm−3 allows its use in different magnetic applications. Furthermore, the synthesis method is a low-cost technology that yields a more environmentally friendly final effluent.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dias, A. and Lopes Buono, V.T., J. Mater. Res. 12, 3278 (1997).CrossRefGoogle Scholar
2.Dias, A., Paniego, R.M., and Lopes Buono, V.T., J. Mater. Chem. 7, 2441 (1997).CrossRefGoogle Scholar
3.Chatterjee, A., Das, D., Pradhan, S.K., and Chakravorty, D., J. Magn. Magn. Mater. 127, 214 (1993).CrossRefGoogle Scholar
4.Burkle, J.O. and Freeman, N.H., Iron Control in Hydrometallurgy (Ellis Horwood, Chichester, 1986), pp. 754772.Google Scholar
5.Nyman, B. and Koivunen, T., Iron Control in Hydrometallurgy (Ellis Horwood, Chichester, 1986), pp. 520536.Google Scholar
6.Munns, W.K., Iron Control in Hydrometallurgy (Ellis Horwood, Chichester, 1986), pp. 537548.Google Scholar
7.Karner, W., Iron Control in Hydrometallurgy (Ellis Horwood, Chichester, 1986), pp. 582592.Google Scholar
8.Martín de Vidales, J.L., García-Martínez, O., Vila, E., Rojas, M.R., and Torralvo, M.J., Mater. Res. Bull. 28, 1135 (1993).CrossRefGoogle Scholar
9.Martín de Vidales, J.L., Rojas, M.R., Vila, E., and García-Martínez, O., Mater. Res. Bull. 29, 1163 (1994).CrossRefGoogle Scholar
10.Sakthivel, A. and Young, R.A., Users Guide to Programs DBWS-9006 and DBWS-9006PC for Rietveld Analysis of X-ray and Neutrons Powder Diffraction Patterns (School of Physics, Georgia Institute of Technology, Atlanta, 1991).Google Scholar
11.Ueda, M., Shimada, S., and Inagaki, M., J. Mater. Chem. 3, 1199 (1993).CrossRefGoogle Scholar
12.Hill, R.J., Craig, J.R., and Gibbs, G.V., Phys. Chem. Mineral. 4, 317 (1979).CrossRefGoogle Scholar
13.Navrotsky, A. and Kleppa, O.J., J. Inorg. Nucl. Chem. 29, 2701 (1967).CrossRefGoogle Scholar
14.Shannon, R.D., Acta Crystallogr. A32, 751 (1976).CrossRefGoogle Scholar
15.Poix, P., Ann. Chim. 10, 49 (1965).Google Scholar
16.Poix, P., Bull. Soc. Chim. Fr., 5, 1085 (1965).Google Scholar