Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T22:57:48.904Z Has data issue: false hasContentIssue false

Synthesis, structure, and gas sensitivity properties of SnO2–CuO mixture phase obtained by pyrolysis of an aerosol

Published online by Cambridge University Press:  31 January 2011

J. Román
Affiliation:
Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, Spain
J. C. Fabian
Affiliation:
Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, Spain
M. Labeau
Affiliation:
Laboratoire des Matériaux et du Génie Physique, URA 1109 CNRS, INPG, BP46, 38402 Saint Martin d'Hères, France
G. Delabouglise
Affiliation:
Laboratoire des Matériaux et du Génie Physique, URA 1109 CNRS, INPG, BP46, 38402 Saint Martin d'Hères, France
M. Vallet-Regí
Affiliation:
Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, and Instituto de Magnetismo Aplicado, RENFE-UCM, Apdo. 155, Las Rozas, 28030-Madrid, Spain
Get access

Abstract

SnO2–CuO mixture phase has been prepared by pyrolysis of an aerosol produced by ultrahigh frequency of different precursor solutions. As-received samples were annealed in different conditions to study the influence of the temperature on the microstructure. Scanning electron microscopy showed that the samples consisted of hollow spherical particles and rings, depending on the precursor solution utilized. The evolution of conductance under both pure and polluted air is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Heiland, G., Sensors and Actuators 2, 343 (1982).CrossRefGoogle Scholar
2.Tofield, B. C., Solid State Gas Sensors (Adam Hilger, Bristol, 1987).Google Scholar
3.Fliegel, W., Behr, G., Werner, J., and Krabbes, G., Sensors and Actuators B 18, 474 (1994).Google Scholar
4.Khol, D., Sensors and Actuators B 1, 158 (1990).Google Scholar
5.Lalauze, R. and Pijolat, C., Sensors and Actuators 5, 55 (1984).Google Scholar
6.Xu, C., Tamaki, J., Miura, N., and Yamazoe, N., J. Mater. Sci. 27, 963 (1992).Google Scholar
7.Matsushima, S., Terakoa, Y., Miura, N., and Yamazoe, N., Jpn. J. Appl. Phys. 27, 1798 (1988).Google Scholar
8.Lalauze, R., Thiesse, J. C. Le, Pijolat, C., and Soustelle, M., Solid State Ionics 12, 453 (1984).CrossRefGoogle Scholar
9.Labeau, M., Schmatz, U., Delabouglise, G., Román, J., Vallet-Regí, M., and Gaskov, A., Sensors and Actuators B 26, 49 (1995).Google Scholar
10.Vallet-Regí, M., Ragel, V., Román, J., Martínez, J. L., Labeau, M., and González-Calbet, J. M., J. Mater. Res. 8, 138 (1993).Google Scholar
11.Labeau, M., Gautheron, B., Delabouglise, G., Peña, J., Ragel, V., Varela, A., Román, J., Martínez, J. L., González-Calbet, J. M., and Vallet-Regí, M., Sensors and Actuators B 15, 379 (1993).Google Scholar
12.Labeau, M., Gautheron, B., Peña, J., Vallet-Regí, M., and González-Calbet, J. M., Solid State Ionics 63, 159 (1993).CrossRefGoogle Scholar