Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T15:31:34.740Z Has data issue: false hasContentIssue false

TEM study of synthetic hillebrandite (Ca2SiO4 · H2O)

Published online by Cambridge University Press:  03 March 2011

Youn Joong Kim
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Waltraud M. Kriven
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Takeshi Mitsuda
Affiliation:
Ceramic Research Laboratory, Nagoya Institute of Technology, Tajimi, Gifu 507, Japan
Get access

Abstract

Hillebrandite (dicalcium silicate hydrate) was produced by a hydrothermal process. Its crystal structure and microstructures were investigated by conventional TEM and HREM. Most hillebrandite fibers showed their elongation to be parallel to the b axis and tended to lie on the {001} cleavage planes. Selected area diffraction patterns frequently displayed continuous streaking, and corresponding dark-field images revealed stacking disorders perpendicular to the fiber axis. The morphology, stacking disorders, and extinction conditions of {hkO} reflections and hillebrandite resembled those of the minerals wollastonite (CaSiO3) and pectolite (Ca2NaH[SiO3]3). Periodic (100) faulting with a displacement vector 1/2 b is suggested to be the major origin of the streaking and the systematic absences in hillebrandite.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wright, F. E., Am. J. Sci. 26, 545 (1908).CrossRefGoogle Scholar
2Bell, G. M. M., Bensted, J., and Glasser, F. P., Adv. Cement Res. 2, 61 (1989).CrossRefGoogle Scholar
3Ishida, H., Mabuchi, K., Sasaki, K., and Mitsuda, T., J. Am. Ceram. Soc. 75, 2427 (1992).CrossRefGoogle Scholar
4Heller, L., Mineral. Mag. 30, 150 (1953).Google Scholar
5Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G., and Grimmer, A-R., J. Am. Chem. Soc. 102, 4889 (1980).CrossRefGoogle Scholar
6Bell, G.M.M., Bensted, J., Glasser, F. P., Lachowski, E. E., Roberts, D. R., and Taylor, M. J., Adv. Cement Res. 3, 23 (1990).CrossRefGoogle Scholar
7Mamedov, H. S. and Belov, N. V., Dok. Akad. Nauk SSSR 123, 741 (1958).Google Scholar
8Deer, W. A., Howie, R. A., and Zussman, J., Rock-Forming Minerals, V2 A: Single-Chain Silicates, 2nd ed. (John Wiley & Sons, New York, 1978).Google Scholar
9Trojer, F. J., Z. Kristallogr. 127, 291 (1968).CrossRefGoogle Scholar
10Wenk, H-R., Contr. Mineral. Petrol. 22, 238 (1969).CrossRefGoogle Scholar
11Hutchison, J. L. and McLaren, A. C., Contr. Mineral. Petrol. 55, 303 (1976).CrossRefGoogle Scholar
12Hutchison, J. L. and McLaren, A. C., Contr. Mineral. Petrol. 61, 11 (1977).CrossRefGoogle Scholar
13Jefferson, D. A. and Thomas, J. M., Mater. Res. Bull. X, 761 (1975).CrossRefGoogle Scholar
14Wenk, H-R., Miiller, W. F., Liddell, N. A., and Phakey, P. P., Electron Microscopy in Mineralogy (Springer, Berlin, Heidelberg, New York, 1976), p. 324.CrossRefGoogle Scholar
15Prewitt, C. T., Z. ICristallogr. 125, 298 (1967).CrossRefGoogle Scholar
16Takeuchi, Y., Kudoh, Y., and Yamanaka, T., Am. Mineral. 61, 229 (1976).Google Scholar
17Miiller, W. F., Z. Kristallogr. 144, 401 (1976).CrossRefGoogle Scholar