Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T19:19:15.978Z Has data issue: false hasContentIssue false

Tension and stress relaxation behavior of a La-based bulk metallic glass

Published online by Cambridge University Press:  31 January 2011

G.Q. Zhang
Affiliation:
International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China; and Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Zhejiang Sci-Tech University), Ministry of Education, Hangzhou 310018, People’s Republic of China
Q.K. Jiang
Affiliation:
International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
X.P. Nie
Affiliation:
International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
L.Y. Chen
Affiliation:
International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
L.N. Wang
Affiliation:
Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Zhejiang Sci-Tech University), Ministry of Education, Hangzhou 310018, People’s Republic of China
M. Shao
Affiliation:
Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Zhejiang Sci-Tech University), Ministry of Education, Hangzhou 310018, People’s Republic of China
X.D. Wang
Affiliation:
International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
Y.G. Liu
Affiliation:
Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, People’s Republic of China
H.S. Xie
Affiliation:
Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, People’s Republic of China
C.L. Qin
Affiliation:
Japan Science and Technology Agency, Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan
A. Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Y.W. Wang
Affiliation:
International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
J.Z. Jiang*
Affiliation:
International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: jiangjz@zju.edu.cn
Get access

Abstract

Tension and stress-relaxation behaviors of a La62Al14Cu11.7Ag2.3Ni5Co5 bulk metallic glass (BMG) as a function of isothermal annealing time have been investigated. It is found that annealing at 373 K below the glass-transition temperature (423 K) of the BMG alloy causes an increase of special heat difference at the glass transition and density of the alloy, indicating a reduction of free volume in the BMG alloy with annealing time. Compared with the as-cast sample, the fracture strength, Vickers hardness, viscosity, Young’s modulus, and stress-relaxation stability of the annealed BMGs increase with annealing time, which is caused by the reduction of free volume in the annealed samples. Furthermore, a change of fracture morphology from a mixture of smooth and furrow zones in the as-cast sample to a mainly furrow zone in the sample annealed for 8 h was also observed. All samples exhibit brittle behavior during tension tests.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Peker, A.Johnson, W.L.: A highly processing metallic glass: Zr41.5Ti13.8Cu12.5Ni10Be22.5. Appl. Phys. Lett. 63, 2342 1993CrossRefGoogle Scholar
2Inoue, A., Yokoyama, Y., Shinohara, Y.Masumoto, T.: Preparation of bulky Zr-based amorphous alloys by a zone melting method. Mater. Trans., JIM 35(12), 923 1994CrossRefGoogle Scholar
3Jin, K.F.Löffler, F. Jörg: Bulk metallic glass formation in Zr–Cu–Fe–Al alloys. Appl. Phys. Lett. 86, 241909 2005CrossRefGoogle Scholar
4Zhang, G.Q., Jiang, Q.K., Chen, L.Y., Shao, M., Liu, J.F.Jiang, J.Z.: Synthesis of centimeter-size Ag-doped Zr–Cu–Al metallic glasses with large plasticity. J. Alloys Compd. 424, 176 2006CrossRefGoogle Scholar
5He, Y., Schwarz, R.B.Archuleta, J.I.: Bulk glass formation in the Pd–Ni–P system. Appl. Phys. Lett. 69, 1861 1996CrossRefGoogle Scholar
6Inoue, A., Zhang, T., Nishiyama, N., Ohba, K.Masumoto, T.: Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy. Mater. Trans., JIM 34, 1234 1993CrossRefGoogle Scholar
7Ma, H., Shi, L.L., Xu, J., Li, Y.Ma, E.: Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett. 87, 181915 2005Google Scholar
8Xu, D.H., Duan, G.Johnson, W.L.: Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett. 92, 245504 2004CrossRefGoogle ScholarPubMed
9Dai, C.L., Hua, G., Yong, S., Li, Y., Ma, E.Xu, J.: A new centimeter-diameter Cu-based bulk metallic glass. Scripta Mater. 54, 1403 2006CrossRefGoogle Scholar
10Ponnambalam, V., Poon, S.J.Shiflet, G.J.: Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mater. Res. 19, 1320 2004Google Scholar
11Shen, J., Chen, Q.J., Sun, J.F., Fan, H.B.Wang, G.: Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Appl. Phys. Lett. 86, 151907 2005CrossRefGoogle Scholar
12Lu, Z.P., Liu, C.T., Thompson, J.R.Porter, W.D.: Structural amorphous steels. Phys. Rev. Lett. 92, 245503 2004CrossRefGoogle ScholarPubMed
13Park, E.S.Kim, D.H.: Rapid lateral solidification of pure Cu and Au thin films encapsulated in SiO2. Appl. Phys. Lett. 86, 201912 2005CrossRefGoogle Scholar
14Guo, F.Q., Poon, S.J.Shiflet, G.J.: Metallic glass ingots based on yttrium. Appl. Phys. Lett. 83, 2575 2005CrossRefGoogle Scholar
15Zhang, Y., Tan, H.Li, Y.: Bulk glass formation of 12 mm rod in La–Cu–Ni–Al alloys. Mater. Sci. Eng., A 375, 436 2004CrossRefGoogle Scholar
16Li, R., Pang, S.J., Men, H., Ma, C.L.Zhang, T.: Formation and mechanical properties of (Ce–La–Pr–Nd)–Co–Al bulk glassy alloys with superior glass-forming ability. Scripta Mater. 54, 1123 2006CrossRefGoogle Scholar
17Zhang, B., Wang, R.J., Zhao, D.Q., Pan, M.X.Wang, W.H.: Superior glass-forming ability through microalloying in cerium-based alloys. Phys. Rev. B: Solid State 73, 092201 2006CrossRefGoogle Scholar
18Jiang, Q.K., Zhang, G.Q., Chen, L.Y., Wu, J.Z., Zhang, H.G.Jiang, J.Z.: Glass formability, thermal stability and mechanical properties of La-based bulk metallic glasses. J. Alloys Compd. 424, 183 2006CrossRefGoogle Scholar
19Lowhaphandu, P., Ludrosky, L.A., Montgomery, S.L.Lewandowski, J.J.: Deformation and fracture toughness of a bulk amorphous Zr-Ti-Ni-Cu-Be alloy. Intermetallics 8, 487 2000CrossRefGoogle Scholar
20Alpas, A.T., Edwards, L.Reid, C.N.: Fracture and fatigue-crack propagation in a nickel-base metallic glass. Metall. Trans. A 20, 1395 1989CrossRefGoogle Scholar
21He, G., Lu, J., Bian, Z., Chen, D.J., Chen, G.L., Tu, G.H.Chen, G.J.: Fracture morphology and quenched-in precipitates induced embrittlement in a Zr-base bulk glass. Mater. Trans. 42, 356 2001CrossRefGoogle Scholar
22Inoue, A., Kimura, H.M.Zhang, T.: High-strength aluminum- and zirconium-based alloys containing nanoquasicrystalline particles. Mater. Sci. Eng., A 294, 727 2000CrossRefGoogle Scholar
23Inoue, A., Zhang, W., Zhang, T.Kurosaka, K.: High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems. Acta Mater. 49, 2645 2001CrossRefGoogle Scholar
24Liu, C.T., Heatherly, L., Easton, D.S., Carmichael, C.A., Schneibel, J.H., Chen, C.H., Wright, J.L., Yoo, M.H., Horton, J.A.Inoue, A.: Test environments and mechanical Properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans. A 29, 1811 1998CrossRefGoogle Scholar
25Zhang, Z.F., He, G., Eckert, J.Schultz, L.: Fracture mechanisms in bulk metallic glassy materials. Phys. Rev. Lett. 91, 045505 2003Google Scholar
26Lee, M.L., Li, Y.Schuh, C.A.: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass. Acta Mater. 52, 4121 2004CrossRefGoogle Scholar
27Bobrov, O.P., Laptev, S.N., Neuhauser, H., Khonik, V.A.Csach, K.: Stress relaxation and viscosity of a bulk Pd40Cu30Ni10P20 metallic glass under isochronous heating conditions. Phys. Sol. State (St. Petersburg). 46, 1801 2004Google Scholar
28Bobrov, O.P., Khonik, V.A.Laptev, S.N.: Isochronal tensile stress relaxation of a bulk metallic glass. Scripta Mater. 50, 337 2004CrossRefGoogle Scholar
29Bobrov, O.P., Laptev, S.N.Khonik, V.A.: Stress relaxation in an Zr52.5Ti5Cu17.9Ni14.6Al10 bulk metallic glass. Phys. Sol. State (St. Petersburg) 46, 471 2004Google Scholar
30Bobrov, O.P., Khonik, V.A., Kitagawa, K.Laptev, S.N.: Isothermal stress relaxation of bulk and ribbon Zr-based metallic glass. J. Non-Cryst. Solids 342, 152 2004CrossRefGoogle Scholar
31Bobrov, O.P., Csach, K., Khonik, V.A., Kitagawa, K., Laptev, S.N.Yazvitsky, M.Yu.: Stress relaxation of bulk and ribbon glassy Pd40Cu30Ni10P20. Scripta Mater. 54, 369 2006CrossRefGoogle Scholar
32Cohen, M.H.Turnbull, D.: Relation between dispersion and intensity measurements in pure liquids. J. Chem. Phys. 31, 1146 1959Google Scholar
33Turnbull, D.Cohen, M.H.: Free-volume model of the amorphous phase: Glass transition. J. Chem. Phys. 34, 120 1961CrossRefGoogle Scholar
34Hey, P.D., Sietsma, J.van den Beukel, A.: Structural disordering in amorphous Pd40Ni40P20 induced by high temperature deformation. Acta Mater. 46, 5873 1998CrossRefGoogle Scholar
35van den Beukel, A.Sietsman, J.: The glass transition as a free volume related kinetic phenomenon. Acta Metall. Mater. 38, 383 1990Google Scholar
36Daniel, B.S.S., Reger-Leonhard, A., Heilmaier, M., Eckert, J.Schultz, L.: Thermal relaxation and high temperature creep of. Zr55Cu30Al10Ni5 bulk metallic glass. Mech. Time-Depend. Mater. 6, 193 2002CrossRefGoogle Scholar
37Slipenyuk, A.Eckert, J.: Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass. Scripta Mater. 50, 39 2004CrossRefGoogle Scholar
38Martin, S.W., Walleser, J., Karthikeyan, A.Sordelet, D.J.: Enthalpy relaxation studies of the glass transition in a metallic glass. J. Non-Cryst. Solids 349, 347 2004CrossRefGoogle Scholar
39Harms, U., Jin, O.Schwarz, R.B.: Effects of plastic deformation on the elastic modulus and density of bulk amorphous Pd40Ni10Cu30P20. J. Non-Cryst. Solids 317, 200 2003CrossRefGoogle Scholar
40Fan, C., Liaw, P.K., Wilson, T.W., Dmowski, W., Choo, H., Liu, C.T., Richardson, J.W.Proffen, Th.: Structural model for bulk amorphous alloys. Appl. Phys. Lett. 89, 111905 2006CrossRefGoogle Scholar
41Fan, C., Liaw, P.K., Haas, V., Wall, J.J., Choo, H., Inoue, A.Liu, C.T.: Structures and mechanical behaviors of Zr55Cu35Al10 bulk amorphous alloys at ambient and cryogenic temperatures. Phys. Rev. B 74, 014205 2006CrossRefGoogle Scholar
42Fan, C., Liaw, P.K., Wilson, T., Choo, H., Gao, Y.F.Liu, C.T.: Pair distribution function study and mechanical behavior of as-cast and structurally relaxed Zr-based bulk metallic glasses. Appl. Phys. Lett. 89, 231920 2006CrossRefGoogle Scholar
43Spaepen, F.: Microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 1977CrossRefGoogle Scholar
44Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 1979CrossRefGoogle Scholar
45Kimura, H.Masumoto, T.: Fracture toughness of amorphous metals. Scripta Metall. 9, 211 1975CrossRefGoogle Scholar