Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T21:24:41.113Z Has data issue: false hasContentIssue false

Thermal analysis of rare earth gallates and aluminates

Published online by Cambridge University Press:  31 January 2011

H. M. O'Bryan
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
P. K. Gallagher
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
G. W. Berkstresser
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
C. D. Brandle
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

Dilatometry, high-temperature x-ray diffraction, differential thermal analysis, and differential scanning calorirmetry have been performed on LaGaO3, NdGaO3, PrGaO3, SmAlO3, and LaAlO3 single crystals grown by the Czochralski technique. First order phase transitions have been located at 145°C for LaGaO3 and 785°C for SmAlO3, and ΔH has been measured for the LaGaO3 transition. Second order transitions have been identified for LaGaO3, PrGaO3, NdGaO3, and LaAlO3. The usefulness of these compounds as substrates for high temperature superconducting films is discussed in terms of thermal expansion matching.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Mankiewich, P. M., Howard, R. E., Skocpol, W. J., Dayem, A. H., and Ourmazd, A., Young, M. G., and Good, E., Proc. Mater. Res. Soc. Symp. 99, 119 (1987).CrossRefGoogle Scholar
2 Thermal Expansion-Non-Metallic Solids, Thermophysical Properties of Matter, edited by Touloukian, Y.S. (Plenum, New York, 1977), Vol. 13, p. 570.Google Scholar
3 O'Bryan, H. M. and Gallagher, P. K., Adv. Ceram. Mater. 2 (3B), 640 (1987).CrossRefGoogle Scholar
4 Sandstrom, R. L., Giess, E.A., Gallagher, W. J., Segmiiller, A., Cooper, E.I., Chisholm, M.F., Gupta, A., Shinde, S., and Laibowitz, R.B., Appl. Phys. Lett. 53 (19), 1874, 7 November 1988.Google Scholar
5 Simon, R.W., Platt, C.E., Lee, A.E., Daly, K.P., Wire, M.S., Luine, J.W., and Urbanik, M., Appl. Phys. Lett. 53, 2677 (1988).CrossRefGoogle Scholar
6 Koren, G., Gupta, A., Gress, E.A., Segmiiller, A., and Laibowitz, R.B., Appl. Phys. Lett. 54, 1054 (1989).CrossRefGoogle Scholar
7 Brandle, C. D., Berkstresser, G.W., and Valentino, A. J., J. Cryst. Growth 79, 308 (1986).CrossRefGoogle Scholar
8 Berkstresser, G.W., Brandle, C. D., and Valentino, A. J., to be submitted to J. Cryst. Growth.Google Scholar
9 Berkstresser, G.W., Brandle, C. D., and Valentino, A. J., to be submitted to J. Cryst. Growth.Google Scholar
10 Geller, S., Acta Crystallogr. 10, 243 (1957).CrossRefGoogle Scholar
11 Geller, S. and Bala, V. B., Acta Crystallogr. 9, 1019 (1956).CrossRefGoogle Scholar
12 Wood, E. A., Amer. Min. 36, M768 (1951).Google Scholar
13 Fay, H. and Brandle, C. D., J. Phys. Chem. Solids, Suppl. 1, 51 (1967).Google Scholar