Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T19:09:53.910Z Has data issue: false hasContentIssue false

Thermochemistry of combustion reaction in Al–Ti–C system during mechanical alloying

Published online by Cambridge University Press:  31 January 2011

L. L. Ye
Affiliation:
National Key Lab for RSA, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China
Z. G. Liu
Affiliation:
Department of Production Systems Engineering, Toyohashi University of Technology, Tempaku-Cho, Toyohashi 441, Japan
S. D. Li
Affiliation:
National Key Lab for RSA, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China
M. X. Quan
Affiliation:
National Key Lab for RSA, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China
Z. Q. Hu
Affiliation:
National Key Lab for RSA, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China
Get access

Abstract

The combustion reaction while mechanical alloying (MA) the Al–Ti–C system has been detected by in situ thermal analysis and the results of x-ray diffraction (XRD). Based on the information provided by in situ thermal analysis, the reaction temperature is estimated to be 1677 K, which is in good agreement with the value of the adiabatic temperature of 1700 K. It is considered that the formation reaction of Ti–C, which ignited by the heavy collisions of milling balls, induced the following reaction between Ti and Al at high temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Holt, J. B. and Munir, Z. A., J. Mater. Sci. 21, 215 (1986).Google Scholar
2.Yamada, O., Miyamoto, Y., and Koizumi, M., J. Am. Ceram. Soc. 70, C206 (1987).Google Scholar
3.Dunmead, S. D., Readey, D. W., Semler, C. E., and Holt, J. B., J. Am. Ceram. Soc. 72, 2318 (1989).Google Scholar
4.Choi, Y. and Rhee, S-W., J. Mater. Res. 8, 3202 (1993).Google Scholar
5.Choi, Y. and Rhee, S-W., J. Mater. Sci. 28, 6669 (1993).Google Scholar
6.Mei, B. C., Yuan, R. Z., and Duan, X. L., J. Mater. Res. 8, 2830 (1993).Google Scholar
7.Dunmead, S. D., Munir, Z. A., Holt, J. B., and Kingman, D. D., J. Mater. Sci. 26, 2410 (1990).Google Scholar
8.Schwarz, R. B., Petrich, R. R., and Saw, C. K., J. Non-Cryst. Solids 76, 281 (1985).Google Scholar
9.Klassen, T., Oehring, M., and Bormann, R., J. Mater. Res. 9, 47 (1994).Google Scholar
10.Ecket, J., Holzer, J. C., and Johnoson, W. L., Scripta. Metall. 27, 1105 (1992).Google Scholar
11.Atzmon, M., Phys. Rev. Lett. 64, 487 (1990).Google Scholar
12.Ma, E., Pagan, J., Cranford, G., and Atzmon, M., J. Mater. Res. 8, 1836 (1993).Google Scholar
13.Liu, Z. G., Guo, J. T., Ye, L. L., Li, G. S., and Hu, Z. Q., Appl. Phys. Lett. 65, 2666 (1994).Google Scholar
14.Ye, L. L., Liu, Z. G., Quan, M. X., and Hu, Z. Q., J. Appl. Phys. 80, 1910 (1996).Google Scholar
15.Storm, E. K., The Refractory Carbides (Academic Press, New York and London, 1967), p. 8.Google Scholar
16.Schwarz, R. B. and Koch, C. C., Appl. Phys. Lett. 49, 146 (1986).Google Scholar
17.Eckert, J., Schultz, L., Hellstern, E., and Urban, K., J. Appl. Phys. 64, 3224 (1988).Google Scholar
18.Smithells, C. J., Metal Reference Book, 5th ed. (Butterworths, London, Boston, 1976), pp. 194, 223.Google Scholar
19.Barin, I., Thermochemical Data of Pure Substances (VCH, Berlin, 1993), p. 71.Google Scholar