Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-29T06:49:14.963Z Has data issue: false hasContentIssue false

Thermoelectric oxide modules tested in a solar cavity-receiver

Published online by Cambridge University Press:  03 June 2011

Petr Tomeš
Affiliation:
Solid State Chemistry and Catalysis, Empa, Swiss Federal Laboratories for Materials Science and Research, CH-8600Duebendorf, Switzerland
Clemens Suter
Affiliation:
Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
Matthias Trottmann
Affiliation:
Solid State Chemistry and Catalysis, Empa, Swiss Federal Laboratories for Materials Science and Research, CH-8600Duebendorf, Switzerland
Aldo Steinfeld
Affiliation:
Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland; and Solar Technology Laboratory, Paul Scherrer Institute, 5232 Villigen, Switzerland
Anke Weidenkaff*
Affiliation:
Solid State Chemistry and Catalysis, Empa, Swiss Federal Laboratories for Materials Science and Research, CH-8600Duebendorf, Switzerland
*
a)Address all correspondence to this author. e-mail: anke.weidenkaff@empa.ch
Get access

Abstract

Four-leg thermoelectric oxide modules (TOMs) consisting of two p-type (La1.98Sr0.02CuO4) and two n-type (CaMn0.98Nb0.02O3) thermoelectric (TE) legs were produced with a manufacturing quality factor between 30 and 60%. The pressed sintered TE legs revealed 90% of the theoretical density to ensure a sufficient mechanical stability of the TE modules. The legs were connected electrically in series and sandwiched thermally in parallel between two Al2O3 plates serving as absorber and cooler, respectively. A solar cavity-receiver packed with an array of TOMs was subjected to concentrated thermal radiation with peak solar radiative flux intensities exceeding 600 kW/m2. Temperature distributions in the cavity, open-circuit voltage (VOC), and maximum output power (Pmax) were measured for different external loads and solar radiative fluxes (qin). Finally, the solar-to-electricity conversion efficiency (η) was calculated.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Reddy, E.S., Noudem, J.G., Hebert, S., and Goupil, C.: Fabrication and properties of four-leg oxide thermoelectric modules. J. Phys. D: Appl. Phys. 38, 3751 (2005).CrossRefGoogle Scholar
2.Shin, W., Muruyama, N., Ikeda, K., and Sago, S.: Thermoelectric power generation using Li-doped NiO and (Ba, Sr)PbO3 module. J. Power Sources 103, 80 (2001).CrossRefGoogle Scholar
3.Funahashi, R., Mikami, M., Mihara, T., Urata, S., and Ando, N.: A portable thermoelectric-power-generating module composed of oxide devices. J. Appl. Phys. 99, 066117 (2006).CrossRefGoogle Scholar
4.Funahashi, R., Matsubara, I., Ikuta, H., Takeuchi, T., Mizutani, U., and Sodeoka, S.: Oxide single crystal with high thermoelectric performance in air. Jpn. J. Appl. Phys. 39, 1127 (2000).CrossRefGoogle Scholar
5.Weidenkaff, A.: Preparation and application of nanostructured perovskite phases. Adv. Eng. Mater. 6, 709 (2004).CrossRefGoogle Scholar
6.Bocher, L., Robert, R., Aguirre, M.H., Malo, S., Hébert, S., Maignan, A., and Weidenkaff, A.: Thermoelectric and magnetic properties of perovskite-type manganate phases synthesised by ultrasonic spray combustion (USC). Solid State Sci. 10, 496 (2008).CrossRefGoogle Scholar
7.Bocher, L., Aguirre, M.H., Logvinovich, D., Shkabko, A., Robert, R., Trottmann, M., and Weidenkaff, A.: CaMn1-xNbxO3 (x ≤ 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials. Inorg. Chem. 47, 8077 (2008).CrossRefGoogle ScholarPubMed
8.Aguirre, M.H., Canulescu, S., Robert, R., Homazava, N., Logvinovich, D., Bocher, L., Lippert, T., Döbeli, M., and Weidenkaff, A.: Structure, microstructure, and high-temperature transport properties of La1-xCaxMnO3-δ thin films and polycrystalline bulk materials. J. Appl. Phys. 103, 013703 (2008).CrossRefGoogle Scholar
9.Kim, S.S., Yin, F., and Kagawa, Y.: Thermoelectricity for crystallographic anisotropy controlled Bi–Te based alloys and p–n modules. J. Alloy. Comp. 419, 306 (2006).CrossRefGoogle Scholar
10.Yamashita, O. and Sugihara, S.: High-performance bismuth-telluride compounds with highly stable thermoelectric figure of merit. J. Mater. Sci. 40, 6439 (2005).CrossRefGoogle Scholar
11.Rowe, D.M.: Thermoelectrics Handbook: Macro to Nano (Taylor & Francis Group, Boca Raton, FL, 2006), pp. 15.Google Scholar
12.Yang, J. and Caillat, T.: Thermoelectric materials for space and automotive power generation. MRS Bull. 31, 224 (2006).CrossRefGoogle Scholar
13.Snyder, G.J.: Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators. Appl. Phys. Lett. 84, 2436 (2004).CrossRefGoogle Scholar
14.Omer, S.A. and Infield, D.G.: Design optimization of thermoelectric devices for solar power generation. Sol. Energy Mater. Sol. Cells 53, 67 (1998).CrossRefGoogle Scholar
15.Tomeš, P., Suter, C., Trottmann, M., Aguirre, M.H., Haueter, P., Steinfeld, A., and Weidenkaff, A.: Thermoelectric oxide modules (TOMs) applied in direct conversion of simulated solar radiation into electrical energy. Materials 3, 2801 (2010).CrossRefGoogle Scholar
16.Suter, C., Tomeš, P., Steinfeld, A., and Weidenkaff, A.: Heat transfer and geometrical analysis of thermoelectric converters driven by concentrated solar radiation. Materials 3, 2735 (2010).CrossRefGoogle Scholar
17.Zhou, S., Zhao, J., Chu, S., and Shi, L.: Synthesis, characterization and magnetic properties of lightly doped La2-xSrxCuO4 (x = 0.04) nanoparticles. Physica C 451, 38 (2007).CrossRefGoogle Scholar
18.Tomeš, P., Robert, R., Trottmann, M., Bocher, L., Aguirre, M.H., Hejtmánek, J., and Weidenkaff, A.: Synthesis and characterization of new ceramic thermoelectrics implemented in a thermoelectric oxide module. J. Electron. Mater. 39, 1696 (2010).CrossRefGoogle Scholar
19.Chung, D.D.L.: Composite Material: Science and Applications (Engineering Materials and Processes), 2nd ed. (Springer-Verlag, London, England, 2010), p. 246.CrossRefGoogle Scholar
20.Bramson, M.A.: Infrared Radiation: A Handbook of Applications (Plenum Press, New York, NY, 1968).CrossRefGoogle Scholar
23.Hirsch, D., Zedtwitz, P.V., Osinga, T., Kinamore, J., and Steinfeld, A.: A new 75 kW high-flux solar simulator for high-temperature thermal and thermochemical research. J. Sol. Energy Eng. 125, 117 (2003).CrossRefGoogle Scholar
24.Petrasch, J.: Thermal modeling of solar chemical reactors: transient behavior, radiative transfer (Master thesis, ETH, Zurich, Switzerland, 2002).Google Scholar
25.Bauccio, M.: ASM Metals Reference Book, 3rd ed. (ASM International, Materials Park, OH, 1997), p. 139.Google Scholar
26.Lemonnier, S., Goupil, Ch., Noudem, J., and Guilmeau, E.: Four-leg Ca0.95Sm0.05MnO3 unileg thermoelectric device. J. Appl. Phys. 104, 014505 (2008).CrossRefGoogle Scholar