Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T02:47:25.313Z Has data issue: false hasContentIssue false

Thin films of rf-magnetron sputtered InN on mica: Crystallography, electrical transport, and morphology

Published online by Cambridge University Press:  31 January 2011

T.J. Kistenmacher
Affiliation:
Milton S. Eisenhower Research Center, Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland 20723–6099
W.A. Bryden
Affiliation:
Milton S. Eisenhower Research Center, Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland 20723–6099
J.S. Morgan
Affiliation:
Milton S. Eisenhower Research Center, Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland 20723–6099
D. Dayan
Affiliation:
Milton S. Eisenhower Research Center, Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland 20723–6099
R. Fainchtein
Affiliation:
Milton S. Eisenhower Research Center, Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland 20723–6099
T.O. Poehler
Affiliation:
Milton S. Eisenhower Research Center, Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland 20723–6099
Get access

Abstract

Reactive rf-magnetron sputtering has been employed for the growth of thin films of InN on the (001) face of mica at a variety of substrate temperatures from 50 to 550 °C. These films have been characterized by x-ray scattering, stylus profilometry, and electrical transport measurements, and their topography has been studied by SEM and STM. At low deposition temperatures, the InN films exhibit texture [(00.1)InN‖ (001)mica], while at higher deposition temperatures a large fraction of the grains are heteroepitaxial [(00.1)InN‖(001)mica, (2.0)InN · (060)mica]. The utility of the x-ray precession method in the determination of this heteroepitaxial relationship is highlighted. The films exhibit a local mobility maximum near a substrate temperature of 350 °C, beyond which a sharp increase in resistivity associated with voids and cracks owing to the onset of secondary grain growth leads to a dramatic decrease in electrical mobility. At the highest growth temperatures, however, the interconnection between grains improves and lower resistivity and higher mobility are re-established.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See, for example, Cox, G. A., Cummins, D. O., Kawabe, K., and Tredgold, R. H., J. Phys. Chem. Solids 28, 543 (1967); D. K. Wickenden, K. R. Faulkner, R. W. Faulkner, R. W. Brander, and B. J. Isherwood, J. Cryst. Growth 9, 158 (1971); W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, J. Appl. Phys. 44, 292 (1973).CrossRefGoogle Scholar
2. See, for example, Sasaki, T. and Zembutsu, S., J. Appl. Phys. 61, 2533 (1987); H. Amano, I. Akasaki, K. Hiramatsu, N. Koide, and N. Sawaki, Thin Solid Films 163, 415 (1988); H. Amano, T. Asahi, and I. Akasaki, Cryst. Growth 98, 209 (1989); T. J. Kistenmacher, D. Dayan, R. Fainchtein, W. A. Bryden, J. S. Morgan, and T. O. Poehler, in Diamond, Boron Nitride, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by J. T. Glass, R. F. Messier, and N. Fujimori (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), p. 573.Google Scholar
3. See, for example, Sasaki, T., Matsuoka, T., and Katsui, A., Appl. Surf. Sci. 41/42, 504 (1989); Z. Sitar, M. J. Paisley, J. Ruan, W. J. Choyke, and R. F. Davis, J. Vac. Sci. Technol. B 8, 316 (1990).Google Scholar
4. For a recent review and fresh insight, see Pankove, J. I., in Diamond, Boron Nitride, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J. T., Messier, R. F., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), p. 515.Google Scholar
5. See, for example, Noreika, A. J. and Ing, D. W., J. Appl. Phys. 39, 5578 (1968); Y. Morimoto, K. Uchiho, and S. Ushio, J. Electron. Soc. 120, 1783 (1973); M. Morita, S. Isogai, N. Shimizu, K. Tsubouchi, and N. Mikoshiba, Jpn. J. Appl. Phys. 20, L173 (1981); C. R. Aita and C. J. Gawiak, J. Vac. Sci. Technol. A 1, 403 (1983).CrossRefGoogle Scholar
6.Kosicki, B. B. and Kahng, D., J. Vac. Sci. Technol. 6, 595 (1969); M. Mizuta, S. Fujieda, Y. Matsumoto, and T. Kawamura, Jpn. J. Appl. Phys. 25, L945 (1986); Y. Sato and S. Sato, Jpn. J. Appl. Phys. 28, L1641 (1989); Y. Mochizuki, M. Mizuta, S. Fujieda, and Y. Matsumoto, Appl. Phys. Lett. 55, 1318 (1989).CrossRefGoogle Scholar
7.Axelrod, J. M. and Grimaldi, F. S., Am. Mineral. 34, 559 (1949); W. Radoslovich, Acta Crystallogr. 13, 919 (1969).Google Scholar
8.Bryden, W. A., Kistenmacher, T. J., Wickenden, D. K., Morgan, J. S., Estes-Wickenden, A. K., Ecelberger, S. A., and Poehler, T. O., APL Tech. Dig. 10, 3 (1989); W. A. Bryden, J. S. Morgan, T. J. Kistenmacher, D. Dayan, R. Fainchtein, and T. O. Poehler, in Diamond, Boron Nitride, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by J. T. Glass, R. F. Messier, and N. Fujimori (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), p. 567.Google Scholar
9.Morgan, J. S., Bryden, W. A., Kistenmacher, T. J., Ecelberger, S. A., and Poehler, T. O., J. Mater. Res. 5, 2677 (1990).CrossRefGoogle Scholar
10.Read, M. H. and Hensler, D. H., Thin Solid Films 10, 123 (1972).CrossRefGoogle Scholar
11.Buerger, M. J., The Precession Method in X-Ray Crystallography (Wiley, New York, 1964).Google Scholar
12. Nanoscope II from Digital Instruments, Inc., 6780 Cortona Drive, Santa Barbara, CA 93110.Google Scholar
13.Miiller, E. W. and Tsong, T. T., Field Ion Microscopy (American Elsevier Publishing Co. Inc., New York, 1969).CrossRefGoogle Scholar
14.Gifkins, R. C., Optical Microscopy of Metals (American Elsevier Publishing Co. Inc., New York, 1970).Google Scholar
15.Kistenmacher, T. J., Bryden, W. A., Morgan, J. S., and Poehler, T. O., J. Appl. Phys. 68, 1541 (1990).Google Scholar
16.Bettini, M. and Brandt, G., J. Appl. Phys. 50, 6938 (1979).Google Scholar
17.Mizuta, M., Fujieda, S., Matsumoto, Y., and Kawamura, T., Jpn. J. Appl. Phys. 25, L945 (1986).Google Scholar
18.Horning, R. D. and Staudenmann, J-L., J. Cryst. Growth 80, 125 (1987).CrossRefGoogle Scholar
19.Fainchtein, R., Dayan, D., Bryden, W. A., Murphy, J. C., and Poehler, T. O., Rev. Prog. Quant. Nondestr. Eval. 9B, 1093 (1990).Google Scholar
20. See, for example: (a) Gimzewski, J. K., Humbert, A., Bednorz, J. G., and Reihl, B., Phys. Rev. Lett. 55, 951 (1985); (b) C. E. D. Chidsey, D. N. Loiacono, T. Sleator, and S. Nakahara, Surf. Sci. 200, 45 (1988); (c) C. Schonenberger, S. F. Alvarado, and C. Ortiz, J. Appl. Phys. 66, 4258 (1989); (d) R. C. Barrett and C. F. Quate, J. Vac. Sci. Technol. A8, 400 (1990)CrossRefGoogle Scholar