Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-02T21:51:52.741Z Has data issue: false hasContentIssue false

Titanium environment in TiO2–BaO–ZnO–B2O3 glasses by x-ray absorption spectroscopy

Published online by Cambridge University Press:  31 January 2011

N. Watanabe
Affiliation:
Laboratório Nacional de Luz Síncrotron, CP 6192, 13083–970 Campinas, Brazil, and Laborato’rio de Química do Estado Sólido, Instituto de Química,UNICAMP, P.O. Box 6154, 13083–970 Campinas, Brazil
A. Y. Ramos
Affiliation:
Laboratório Nacional de Luz Síncrotron, CP 6192, 13083–970 Campinas, Brazil, and Laboratoire de Minéralogie-Cristallographie, CNRS-Paris IV, 4 place Jussieu, 75252 Paris Cedex 05, France
M. C. M. Alves
Affiliation:
Laboratório Nacional de Luz Sóncrotron, CP 6192, 13083–970 Campinas, Brazil
H. Tolentino
Affiliation:
Laboratório Nacional de Luz Sóncrotron, CP 6192, 13083–970 Campinas, Brazil
O. L. Alves
Affiliation:
Laboratório de Quimica do Estado Sólido, Instituto de Química, UNICAMP, P.O. Box 6154, 13083–970 Campinas, Brazil
L. C. Barbosa
Affiliation:
Laboratório de Materiais Vítreos, Instituto de Física Gleb Wataghin, UNICAMP, P.O. Box 6165, 13083–970 Campinas, Brazil
Get access

Abstract

The local environment of titanium in glasses of the system TiO2–BaO–ZnO–B2O3 was studied by x-ray absorption spectroscopy. In all glasses, for TiO2 content varying from 35 to 49 mol%, the titanium atoms are mainly fourfold coordinated network formers. For the glass with the highest titanium content, about 20% of the titanium enters into a sixfold environment, indicating the presence of precrystalline nuclei. These nuclei are responsible for the decrease of the optical performance of the glass above threshold titanium content, prior to any observable crystallization.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Vogel, E.M., J. Am. Ceram. Soc. 72, 719 (1989).CrossRefGoogle Scholar
2.Vogel, E.M., Kosinski, S.G., Krol, D.M., Jackel, J.L., Frieberg, S.R., Oliver, M.K., and Powers, J.D., J. Non-Cryst. Solids 107, 244 (1989).CrossRefGoogle Scholar
3.Hosono, H., Zhang, Z., and Abe, Y., J. Am. Ceram. Soc. 72, 1587 (1989).CrossRefGoogle Scholar
4.Hosono, H. and Abe, Y., J. Non-Cryst. Solids 139, 86 (1992).CrossRefGoogle Scholar
5.Hosono, H., Imai, K., and Abe, Y., J. Electrochem. Soc. 140, L7 (1993).CrossRefGoogle Scholar
6.Sakka, S., Miyaji, F., and Fukumi, K., J. Non-Cryst. Solids 112, 64 (1989).CrossRefGoogle Scholar
7.Zarzycki, J., J. Mater. Sci. 6, 130 (1971).CrossRefGoogle Scholar
8.Vogel, E.M., Weber, M.J., and Krol, D.M., Phys. Chem. Glasses 32, 232 (1991).Google Scholar
9.Canioni, L., Sarger, L., Segonds, P., Ducasse, A., Duchesne, C., Fargin, E., Olazcuaga, R., and le Flem, G., Solid State Commun. 84, 1065 (1992).CrossRefGoogle Scholar
10.Reynoso, V.C.S, Barbosa, L.C., Liu, Y., Alves, O.L., Aranha, N., and Cesar, C.L., J. Mater. Sci. 30, 6299 (1995).CrossRefGoogle Scholar
11.Trap, H.J.L and Stevels, J.M., Phys. Chem. Glasses 1, 107 (1960);Google Scholar
Trap, H.J.L. and Stevels, J.M., Phys. Chem. Glasses 1, 181 (1960).Google Scholar
12.Lee, P.A., Citrin, P.H., Eisenberger, P., and Kincaid, B.M., Rev. Mod. Phys. 53, 769 (1989).CrossRefGoogle Scholar
13.Bianconi, A., in X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, edited by Koningsberger, D.C. and Prins, R. (Wiley-Interscience, New York, 1988), pp. 573662.Google Scholar
14.Tolentino, H., Cezar, J.C., Cruz, D.Z., Compagnon-Cailhol, V., Tamura, E., and Alves, M.C.M, J. Synchrotron Rad. 5, 521 (1998).CrossRefGoogle Scholar
15.Lira, A.C., Rodrigues, A.R.D, Rosa, A., Gonçalves da Silva, C.E.T, Pardine, C., Scorfato, C., Wisinevsky, D., Rafael, F., Franco, G.S., Tosin, G., Lin, L., Janhnel, L., Ferreira., M.J., Tavares, P.F., Farias, R.H.A, and Neuenschwander, R.T., in Proceedings of the European Particle Accelerator Conference (Stockholm, Sweden, 1998), pp. 626628.Google Scholar
16.Ramos, A.Y., Tolentino, H., Barrea, R., and Alves, M.C.M, Labo-ratório Nacional de Luz Síncrotron (LNLS) Internal Report MeT-02/99 (1999).Google Scholar
17.Krause, M.O. and Oliver, J.H., J. Phys. Chem. Ref. Data 8, 329 (1979).CrossRefGoogle Scholar
18.Sayer, D.A. and Bunker, B.A., in X-ray absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, edited by Koningsberger, D.C. and Prins, R. (Wiley-Interscience, New York, 1988), pp. 211253.Google Scholar
19.Ressler, T., J. Phys. IV 7, C2269 (1997).Google Scholar
20.Teo, B.K. and Lee, P.A., J. Am. Chem. Soc. 101, 2815 (1979).CrossRefGoogle Scholar
21.Farges, F., Am. Mineral 82, 36 (1997).CrossRefGoogle Scholar
22.Brouder, C., Conference Proceedings, Vol. 25, edited by Balerna, A., Bernieri, E., and Mobilio, S. (SIF Bologna, 1990), pp. 1922.Google Scholar
23.de Groot, F.M.F., J. Electron Spectrosc. Relat. Phenom. 67, 529 (1994).CrossRefGoogle Scholar
24.Farges, F., J. Non-Cryst. Solids 204, 53 (1996).CrossRefGoogle Scholar