Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T19:16:47.177Z Has data issue: false hasContentIssue false

Topographical changes induced by high dose carbon-bombardment of graphite

Published online by Cambridge University Press:  03 March 2011

B.K. Annis
Affiliation:
Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6197
D.F. Pedraza
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6091
S.P. Withrow
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6048
Get access

Abstract

Highly oriented pyrolytic graphite has been implanted at room temperature with 165 keV C+-ions at doses from 6 × 1017 to 3 × 1019 ions/m2. Implantation-induced topographical changes of differing size scales were studied by optical, scanning electron, scanning tunneling, and atomic force microscopies. Defects with atomic resolution are seen for the lower dose implants. The formation of a vacancy line is revealed for the first time. At the higher doses a dendrite-like system of deep surface cracks is observed. This cracking develops as a result of the large basal plane contraction produced by irradiation which generates high shearing stresses between the implanted, damaged surface layer and the underlying material. Two independent systems of ridges have been characterized. One appears to follow a crystallographic direction while the other appears as a dense, intricate, generally curvilinear network with short ramifications. Additional experiments in which both the ion energy and dose rate have been varied indicate that ridge evolution progresses with increased energy and fluence, but is independent of dose rate. It is suggested that the ridge networks may form as a result of C transport by diffusion from the heavily damaged near-surface region or of a tectonic-plate-like motion or both. The geometric features of the ridge networks are related to the subsurface radiation damage as well.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Dresselhaus, M. S. and Kalish, R., Ion Implantation in Diamond, Graphite and Related Materials (Springer-Verlag, Berlin, Germany, 1992).CrossRefGoogle Scholar
2Thomas, G. J., Bauer, W., Mattern, P. L., and Granoff, B., Adv. Chem. Ser. 158, 97 (1976).CrossRefGoogle Scholar
3Veprek, S., Portmann, A., Webb, A. P., and Stuessi, H., Radiat. Eff. 34, 183 (1977).CrossRefGoogle Scholar
4Sone, K., Abe, T., Obara, K., Yamada, R., and Ohtsuka, H., J. Nucl. Mater. 71, 82 (1977).CrossRefGoogle Scholar
5Langley, R. A., Blewer, R. S., and Roth, J., J. Nucl. Mater. 76/77, 313 (1978).CrossRefGoogle Scholar
6Angstrom, T. R. and Johnson, P. B., J. Nucl. Mater. 60, 241 (1976).Google Scholar
7Erents, S. K., Inst. Phys. Conf. Ser. 28, 318 (1976).Google Scholar
8Yugo, S., Kimura, T., and Kazumata, Y., Carbon 23, 147 (1985).CrossRefGoogle Scholar
9Niwase, K. and Tanabe, T., Proc. Int. Symp. Materials Chemistry in Nuclear Environments, March 1992, Tsukuba, Japan, pp. 437447.Google Scholar
10Bacon, D. J. and Rao, A. S., J. Nucl. Mater. 91, 178 (1980).CrossRefGoogle Scholar
11Elman, B. S., Shayegan, M., Dresselhaus, M. S., Mazurek, H., and Dresselhaus, G., Phys. Rev. B 25, 4412 (1982).CrossRefGoogle Scholar
12Coratger, R., Claverie, A., Ajustron, F., and Beauvillain, J., Surf. Sci. 227, 7 (1990).CrossRefGoogle Scholar
13Freise, E. J. and Kelly, A., Proc. R. Soc. London, Ser. A 264, 269 (1961).Google Scholar
14Porte, L., Phaner, M., de Villeneuve, C. H., Moncoffre, N., and Tousset, J., Nucl. Instrum. Methods B 44, 116 (1989).CrossRefGoogle Scholar
15Coratger, R., Claverie, A., Chahboun, A., Landry, V., Ajustron, F., and Beauvillain, J., Surf. Sci. 262, 208 (1992).CrossRefGoogle Scholar
16Porte, L., de Villeneuve, C.H., and Phaner, M., J. Vac. Sci. Technol. B 9, 1064 (1991).CrossRefGoogle Scholar
17Shedd, G. M. and Russell, P. E., J. Vac. Sci. Technol. A 9, 1261 (1991).CrossRefGoogle Scholar
18Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids, edited by Ziegler, J. F. (Pergamon Press, New York, 1985), Vol. 1.Google Scholar
19Koike, J. and Pedraza, D. F., to be published in Proc. Int. Conf. on Beam Processing of Advanced Materials (ASM, Chicago, 1992).Google Scholar
20Thrower, P. A. and Mayer, R. M., Phys. Status Solidi A 47, 11 (1978).CrossRefGoogle Scholar
21Annis, B. K. and Pedraza, D. F., J. Vac. Sci. Technol. B (1993, in press).Google Scholar
22Kenik, E. A., Pedraza, D. F., and Withrow, S., unpublished.Google Scholar
23Park, S-I. and Quate, C.F., Appl. Phys. Lett. 48, 112 (1986).CrossRefGoogle Scholar
24Mizes, H. A., Park, S-I., and Harrison, W.A., Phys. Rev. B 36, 4491 (1987).CrossRefGoogle Scholar
25Salemink, H. W. M., Batra, I. O., Rohrer, H., Stall, E., and Weibel, E., Surf. Sci. 181, 139 (1987).CrossRefGoogle Scholar
26Albrecht, T. R. and Quate, C. F., J. Vac. Sci. Technol. A 6, 271 (1988).CrossRefGoogle Scholar
27Colton, R. J., Baker, S. M., Driscoll, R. J., Youngquist, M. G., and Baldeschwieler, J. D., J. Vac. Sci. Technol. A 6, 349 (1988).CrossRefGoogle Scholar
28Tjede, T., Varon, J., Deckman, H., and Stokes, J., J. Vac. Sci. Technol. A 6, 372 (1988).Google Scholar
29Yao, J. E. and Jiao, Y. K., J. Vac. Sci. Technol. A 8, 508 (1990).CrossRefGoogle Scholar
30Elings, V. and Wudl, F., J. Vac. Sci. Technol. A 6, 412 (1988).CrossRefGoogle Scholar
31Hembree, D. M. Jr., Pedraza, D. F., and Withrow, S. P., unpublished.Google Scholar
32Hembree, D. M. Jr., Pedraza, D. F., Romanoski, G., Withrow, S. P., and Annis, B. K., in Beam-Solid Interactions-Fundamentals and Applications, edited by Nastasi, M. A., Herbots, N., Harriott, L. R., and Averback, R. S. (Mater. Res. Soc. Symp. Proc. 279, Pittsburgh, PA, 1993).Google Scholar
33Pedraza, D. F., in Phase Formation and Modification by Beam-Solid Interactions, edited by Was, G. S., Rehn, L. E., and Follstaedt, D. (Mater. Res. Soc. Symp. Proc. 235, Pittsburgh, PA, 1992), p. 437.Google Scholar
34Kelly, B. T., in Proc. Third SCI Conference on Industrial Carbons and Graphites (SCI, London, 1972), p. 483.Google Scholar
35Chieu, T. C., Elman, B. S., Salamanca-Riba, L., Endo, M., and Dresselhaus, G., in Ion Implantation and Ion Beam Processing of Materials, edited by Hubler, G. K., Holland, O. W., Clayton, C. R., and White, C.W. (Mater. Res. Soc. Symp. Proc. 27, Elsevier Science Publishing, New York, 1984), p. 487.Google Scholar
36Gotoh, Y., Shimizu, H., and Murakami, H., J. Nucl. Mater. 162–164, 851 (1989).CrossRefGoogle Scholar
37Koike, J. and Pedraza, D. F., unpublished.Google Scholar
38Kelly, B. T., Physics of Graphite (Applied Science Publishers, London and New Jersey, 1981).Google Scholar
39Roscoe, C. and Baker, J., J. Appl. Phys. 40, 1665 (1969).CrossRefGoogle Scholar
40More, A. W., in Chemistry and Physics of Carbon, edited by Walker, P. L. Jr. and Thrower, P. A. (Marcel Dekker, Inc., New York, 1973), Vol. 11, p. 69.Google Scholar
41Niwase, K. and Tanabe, J., J. Nucl. Mater. 179–181, 218 (1991).CrossRefGoogle Scholar
42Kenik, E. A., Pedraza, D. F., and Withrow, S. P., in MSA Meeting Proceedings, to appear in August 1993.Google Scholar