Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T19:05:15.280Z Has data issue: false hasContentIssue false

Transmission electron study of heteroepitaxial growth in the BiSrCaCuO system

Published online by Cambridge University Press:  31 January 2011

A. Chaiken
Affiliation:
Materials Science and Technology Division, Lawrence Livermore National Laboratory, Livermore, California 94550
M. A. Wall
Affiliation:
Materials Science and Technology Division, Lawrence Livermore National Laboratory, Livermore, California 94550
R. H. Howell
Affiliation:
Materials Science and Technology Division, Lawrence Livermore National Laboratory, Livermore, California 94550
I. Bozovic
Affiliation:
E. L. Ginzton Research Laboratory, Varian Associates, Inc., Palo Alto, California 94304–1025
J. N. Eckstein
Affiliation:
E. L. Ginzton Research Laboratory, Varian Associates, Inc., Palo Alto, California 94304–1025
G. F. Virshup
Affiliation:
E. L. Ginzton Research Laboratory, Varian Associates, Inc., Palo Alto, California 94304–1025
Get access

Abstract

Films of Bi2Sr2CaCu2O8 and Bi2Sr2CuO6 have been grown using Atomic-Layer-by-Layer Molecular Beam Epitaxy (ALL-MBE) on lattice-matched substrates. These materials have been combined with layers of closely related metastable compounds like Bi2Sr2Ca7Cu8O20 (2278) and rare-earth-doped compounds like Bi2Sr2DyxCa1–xCu2O8 (Dy: 2212) to form heterostructures with unique superconducting properties, including superconductor/insulator multilayers and tunnel junctions. Transmission electron microscopy (TEM) has been used to study the morphology and microstructure of these heterostructures. These TEM studies shed light on the physical properties of the films, and give insight into the growth mode of highly anisotropic solids like Bi2Sr2CaCu2O8.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Torrance, J. B., Tokura, Y., LaPlaca, S. J., Huang, T. C., Savoy, R. J., and Nazzal, A. I., Solid State Commun. 66, 703 (1988).CrossRefGoogle Scholar
2.Sunshine, S. A., Siegrist, T., Schneemeyer, L. F., Murphy, D. W., Cava, R. J., Batlogg, B., van Dover, R. B., Fleming, R. M., Glarum, S. H., Nakahara, S., Farrow, R., Krajewski, J.J., Zahurak, S. M., Waszczak, J. V., Marshall, J.H., Marsh, P., Rupp, L. W. Jr., and Peck, W. F., Phys. Rev. B 38, 893 (1988).CrossRefGoogle Scholar
3.Sakai, S., Kasai, Y., and Bodin, P., Jpn. J. Appl. Phys. 31, 13991401 (1992).Google Scholar
4.Eckstein, J. N., Bozovic, I., Klausmeier-Brown, M. E., Virshup, G. F., and Ralls, K. S., MRS Bull. 17 (8), 27 (1992).CrossRefGoogle Scholar
5.Eckstein, J. N., Bozovic, I., and Virshup, G. F., MRS Bull. 19 (9), 44 (1994).CrossRefGoogle Scholar
6.Bozovic, I., Eckstein, J. N., Klausmeier-Brown, M. E., and Virshup, G., Supercond, J.. 5, 19 (1992).Google Scholar
7.Howell, R. H., Chaiken, A, Musket, R. G., Wall, M. A., Balooch, M., Phinney, D., Fluss, M. J., Eckstein, J.N., Bozovic, I., and Virshup, G. F., in Oxide Superconductor Physics and Nanoengineering (SPIE Proceedings 2158), edited by Pavuna, D. and Bozovic, I. (SPIE, Bellingham, WA, 1994), pp. 182190.CrossRefGoogle Scholar
8.Schlom, D. G., Marshall, A. F., Harris, J.S. Jr., Bozovic, I., and Eckstein, J. N., in Advances in Superconductivity III, edited by Kajimura, K. and Hayakawa, H. (Springer-Verlag, Tokoyo, 1991).Google Scholar
9.Newcomb, S. B.et al., J. Micros. 140 (Pt. 2), 195 (1985).CrossRefGoogle Scholar
10.Bravman, J. C. and Sinclair, R., J. Electron Micro. Tech. 1, 53 (1984).CrossRefGoogle Scholar
11. MacTempas Image Simulation Software, available from Total Resolution, 20 Florida Ave, Berkeley, CA 94707.Google Scholar
12.Headrick, R. L. and Baribeau, J-M., Phys. Rev. B 48, 9174 (1993).CrossRefGoogle Scholar
13.Sinha, S. K., Sanyal, M. K., Satija, S. K., Majkrzak, C. F., Neumann, D. A., Homma, H., Szpala, S., Gibaud, A., and Morkoc, H., Physica B 198, 72 (1994).CrossRefGoogle Scholar
14.Chen, J., Rippert, E. D., Song, S. N., Ulmer, M. P., and Ketterson, J.B., J. Mater. Res. 9, 1678 (1994).CrossRefGoogle Scholar
15.Berkley, D. D., Johnson, B. R., Anand, N., Beauchamp, K. M., Conroy, L. E., and Goldman, A. M., Appl. Phys. Lett. 53, 1973 (1988).CrossRefGoogle Scholar
16.Heinrich, B., Celinski, Z., Cochran, J.F., Arrott, A. S., Myrtle, K., and Purcell, S. T., Phys. Rev. B 47, 5077 (1993).CrossRefGoogle Scholar
17.Bozovic, I., Eckstein, J. N., Virshup, G. F., Chaiken, A., Wall, M. A., Howell, R. H., and Fluss, M. J., J. Supercond. 7, 187 (1994).CrossRefGoogle Scholar
18.Bozovic, I., Eckstein, J. N., and Virshup, G. F., Physica C 235–240, 178 (1994).CrossRefGoogle Scholar
19.Pennycook, S. J., Ultramicroscopy 30, 58 (1989).CrossRefGoogle Scholar
20.Bando, Y., Kijima, T., Kitami, Y., Tanaka, J., Izumi, F., and Yokoyama, M., Jpn. J. Appl. Phys. Lett. 27, 358 (1988);CrossRefGoogle Scholar
Matsui, Y., Maeda, H., Tanaka, Y., and Horiuchi, S., Jpn. J. Appl. Phys. Lett. 27, 361 (1988).CrossRefGoogle Scholar