Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-30T21:33:46.106Z Has data issue: false hasContentIssue false

Transparent silica gel–PMMA composites

Published online by Cambridge University Press:  31 January 2011

E. J. A. Pope
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, California 90024
M. Asami
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, California 90024
J. D. Mackenzie
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, California 90024
Get access

Abstract

Transparent silica gel–polymer composites have been prepared by the impregnation of porous gels with organic monomer and polymerization in situ. The relative amount of each phase was adjusted by varying the porosity of the silica gel prior to impregnation. These materials constitute a new class of transparent composites. Properties, such as density, refractive index, modulus of rupture, compressive strength, abrasion rate, and Vickers hardness, have been measured over the compositional range of 100% silica to 100% polymethyl methacrylate (PMMA).

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Liu, C. C., Ph.D. dissertation, University of California, Los Angeles, CA, 1980.Google Scholar
2Pope, E.J.A. and Mackenzie, J. D., J. Non-Cryst. Solids 87, 185198 (1986).CrossRefGoogle Scholar
3Pope, E. J. A. and Mackenzie, J. D., in Better Ceramics Through Chemistry II, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R., Mat. Res. Soc. Symp. Proc. 73 (MRS, Pittsburgh, PA, 1986), pp. 809814.Google Scholar
4Pope, E. J. A. and Mackenzie, J.D., in Tailoring Multiphase and Composite Ceramics, Mat. Sci. Res., edited by Tressler, R. E., Messing, G.L., Pantano, C. G., and Newnham, R. G. (Plenum Press, New York, 1986), Vol. 20, pp. 187192.CrossRefGoogle Scholar
5Pope, E. J. A. and Mackenzie, J.D., Mat. Res. Soc. Bull. 12 (3), 2931 (1987).Google Scholar
6Pope, E. J. A. and Mackenzie, J. D., Proc. of 32nd Int. SAMPE Symp., edited by Carson, R., Burg, M., Kjoller, K.J., and Reil, F.J. (SAMPE, Anaheim, CA, 1987), Vol. 32, pp. 760771.Google Scholar
7Richerson, D. W., Modern Ceramic Engineering (Marcel Dekker, Inc., New York, 1982).Google Scholar
8Hust, H. C. van de, Light Scattering by Small Particles (J. Wiley & Sons, New York, 1957).Google Scholar
9Kittel, C., Introduction to Solid State Physics, 5th ed. (J. Wiley & Sons, New York, 1976).Google Scholar
10Billmeyer, F. W. Jr , Textbook of Polymer Science, 2nd ed. (Wiley-Interscience, New York, 1971).Google Scholar
11Spriggs, R. M., J. Am. Ceram. Soc. 45, 454 (1962).CrossRefGoogle Scholar
12Wang, J. C., J. Mat. Sci. 19, 801808 (1984).CrossRefGoogle Scholar
13Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, 2nd ed. (J. Wiley & Sons, New York, 1976).Google Scholar