Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T02:13:56.475Z Has data issue: false hasContentIssue false

Uniformity and interfaces in ion-beam deposited Al/Ni multilayers

Published online by Cambridge University Press:  31 January 2011

A. S. Edelstein
Affiliation:
Naval Research Laboratory, Washington, DC 20375–5343
R. K. Everett
Affiliation:
Naval Research Laboratory, Washington, DC 20375–5343
J. H. Perepezko
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706
M. H. da Silva Bassani
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706
Get access

Abstract

The uniformity and reaction kinetics of ion-beam deposited Al/Ni multilayer samples with the same composition, Al81.8Ni18.2, and modulation wavelength, Λ = 20 nm, but with different total film thicknesses were investigated by x-ray diffraction and differential scanning calorimetry measurements. The total film thicknesses varied between approximately 0.5 and 2.0 μm. It was found that the interface widths were approximately 1 nm and the Ni layers are much more disordered than the Al layers. The thicker samples show an increase in disorder on a length scale comparable to Λ. In other experiments, a change was observed with increasing modulation wavelength from semicoherent interfaces with a low density of misfit dislocations to semicoherent interfaces with a high density of misfit dislocations. The reaction kinetics for forming the Al9Ni2 phase is independent of the sample thickness.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Colgan, E. G., Mater. Sci. Rep. 5, 1 (1990).CrossRefGoogle Scholar
2.Colgan, E. G., Nastasi, M., and Mayer, J. W., J. Appl. Phys. 58, 4125 (1985).CrossRefGoogle Scholar
3.Miracle, D. B., Acta Metall. Mater. 41 (3), 649 (1993).CrossRefGoogle Scholar
4.Edelstein, A. S., Everett, R. K., Richardson, G. R., Quadri, S. B., Altman, E. I., Foley, J. S., and Perepezko, J. H., J. Appl. Phys. 76, 7850 (1994).CrossRefGoogle Scholar
5.Edelstein, A. S., Everett, R. K., Richardson, G. R., Quadri, S. B., Foley, J. S., and Perepezko, J. H., Mater. Sci. Eng. A 195, 13 (1995).CrossRefGoogle Scholar
6.Ma, E., Thompson, C. V., and Clevenger, L. A., J. Appl. Phys. 69 (4), 2211 (1991).CrossRefGoogle Scholar
7.Chaudhuri, J., Gondhalekar, V., and Jankowski, A. F., J. Appl. Phys. 71, 3816 (1922).CrossRefGoogle Scholar
8.Gilles, B. and Marty, A., in Thin Films: Stresses and Mechanical Properties, edited by Baker, S. P., Børgesen, P., Townsend, P. H., Ross, C. A., and Volkert, C. A. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 379.Google Scholar
9.Jongste, J. F., Alkemade, P. F. A., Janssen, G. C. A. M., and Radelaar, S., J. Appl. Phys. 74, 3869 (1993).CrossRefGoogle Scholar
10.Frank, F. C. and van der Merwe, J. H., Proc. R. Soc. London A 198, 216 (1949).Google Scholar
11.van der Merwe, J. H., J. Appl. Phys. 34, 117 (1963).CrossRefGoogle Scholar
12.van der Merwe, J. H., Single Crystal Films (Pergamon, New York, 1964).Google Scholar
13.Mathews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
14.Prokes, S. M. and Spaepen, F., Appl. Phys. Lett. 47, 234 (1985).CrossRefGoogle Scholar
15.Underwood, J. H. and Barbee, T. W., Jr., Appl. Optics 20, 3027 (1981).CrossRefGoogle Scholar
16.Yamane, H., Maeno, Y., and Kobayashi, M., Mater. Trans., JIM 36, 705 (1995).CrossRefGoogle Scholar
17.Michaelsen, C., Philos. Mag. 72, 813 (1995).CrossRefGoogle Scholar
18.Barmak, K., Michaelsen, C., and Lucadamo, G., J. Mater. Res. 12, 133 (1997).CrossRefGoogle Scholar
19.Sasanuma, Y. and Nakayama, K., Thin Solid Films 247, 24 (1994).CrossRefGoogle Scholar
20.Sasanuma, Y., Uchida, M., Okada, K., Yamamoto, K., Kitano, Y., and Ishitani, A., Thin Solid Films 203, 113 (1991).CrossRefGoogle Scholar
21. The expression for the gradient in Ref. 5 should have been =c = 0.8/(0.906 3 23/2σ)where the symbol s has the same meaning as the symbol β used here.Google Scholar
22.Clemens, B. M., private communication.Google Scholar