Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-30T21:48:33.701Z Has data issue: false hasContentIssue false

UV induced dielectric loss in AlN ceramics

Published online by Cambridge University Press:  03 March 2011

J.H. Harris
Affiliation:
The Carborundum Company, BP America, Warrensville Research Center, 4440 Warrensville Center Road, Cleveland, Ohio 44124
R.C. Enck
Affiliation:
The Carborundum Company, BP America, Warrensville Research Center, 4440 Warrensville Center Road, Cleveland, Ohio 44124
Get access

Abstract

The dissipation factor of aluminum nitride ceramics (AlN), doped with various concentrations of oxygen, is probed at 1 kHz before and after exposure to UV radiation. The results of this study show that UV photogenerated carriers, which are trapped at charged oxygen impurity related defect sites, are responsible for the observed dielectric loss. A simple energy level diagram is presented that outlines trapped carrier distributions within the AlN bandgap and is consistent with the experimentally observed changes in dissipation factor as a function of time, UV exposure, and exposure to visible light, which liberates carriers from charged trap sites.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Slack, G. A., J. Phys. Chem. Solids 34, 321 (1973).CrossRefGoogle Scholar
2Enck, R. C. and Harris, R. D., in Advanced Electronic Packaging Materials, edited by Barfknecht, A. T., Partridge, J. P., Chen, C. J., and Li, C-Y. (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1990), p. 235.Google Scholar
3Taylor, K. M. and Lenie, C., J. Electrochem. Soc. 107, 308 (1960).CrossRefGoogle Scholar
4Harris, R. D., Enck, R. C., and Fields, J. L., in Advanced Electronic Packaging Materials, edited by Barfknecht, A. T., Partridge, J. P., Chen, C. J., and Li, C-Y. (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1990), p. 229.Google Scholar
5Harris, J. H., Youngman, R. A., and Teller, R. G., J. Mater. Res. 5, 1763 (1990).CrossRefGoogle Scholar
6Kuramoto, N., Taniguchi, H., Numata, Y., and Aso, I., Yogyo-Kyokai-Shi 93, 41 (1985).CrossRefGoogle Scholar
7Slack, G. A., Tanzilli, R. A., Pohl, R. O., and Vandersande, J. W., J. Phys. Chem. Solids 48, 641 (1987).CrossRefGoogle Scholar
8Kurokawa, Y., Utsumi, K., and Takamizawa, H., J. Am. Ceram. Soc. 71, 588 (1988).CrossRefGoogle Scholar
9Virkar, A., Jackson, T. B., and Cutler, R., J. Am. Ceram. Soc. 72, 203 (1989).CrossRefGoogle Scholar
10Youngman, R. A., Harris, J. H., and Chernoff, D. A., Ceram. Trans. 5, 399 (1989).Google Scholar
11Pastrnak, J., Pocesova, S., and Roskovcova, L., Czech. J. Phys. B 24, 1149 (1974).CrossRefGoogle Scholar
12Youngman, R. A. and Harris, J. H., J. Am. Ceram. Soc. 73, 3238 (1990).CrossRefGoogle Scholar
13Harris, J. H. and Youngman, R. A., J. Mater. Res. 8, 154 (1993).CrossRefGoogle Scholar
14Harris, J. H., Enck, R. C., and Youngman, R. A., Phys. Rev. B 47, 5428 (1993).CrossRefGoogle Scholar
15Zulfequar, M., Singh, D. B., and Kumar, A., Mater. Sci. Technol. 5, 403 (1989).CrossRefGoogle Scholar
16Lopatin, V. V. and Kabyshev, A. V., Phys. Status Solidi A 116, 221 (1989).CrossRefGoogle Scholar
17Youngman, R. A., Harris, J. H., Labun, P. A., and Graham, R. J., in Advanced Electronic Packaging Materials, edited by Barfknecht, A. T., Partridge, J. P., Chen, C. J., and Li, C-Y. (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1990), p. 271.Google Scholar
18Huseby, I. C. and Bobik, C. F., U. S. Patent 4547471 (October 15, 1985).Google Scholar
19Kuramoto, N., Taniguchi, H., and Aso, I., Adv. Ceram. 26, 107 (1989).Google Scholar
20Komeya, K., Inoue, H., and Tsuge, A., Yogyo-Kyokai-Shi 89, 58 (1981).Google Scholar
21It has been observed that annealing at 300 °C initiates radiative recombination of carriers trapped at oxygen-related defect sites. During the heating cycle, bright photoluminescence is observed, and after the cycle is complete, an originally photodarkened sample is returned to its original light tan color.Google Scholar
22Enck, R. C. and Harris, J. H., unpublished.Google Scholar