Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T19:25:55.374Z Has data issue: false hasContentIssue false

Whisker/matrix interface and microstructure of MgO-whisker reinforced (Bi, Pb)2Sr2Ca2Cu3Ox high-temperature superconducting composite

Published online by Cambridge University Press:  31 January 2011

Y. S. Yuan
Affiliation:
Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-4792
M. S. Wong
Affiliation:
Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-4792
S. S. Wang
Affiliation:
Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-4792
Get access

Abstract

In this paper, a comprehensive study of the microstructure and the whisker/matrix interface of a (MgO)w/BPSCCOhigh-temperature superconducting composite is reported. The bulk MgO-whisker reinforced HTS BPSCCO (2223) composite was fabricated using a recently developed solid-state processing method. The (MgO)w/BPSCCO composite has been demonstrated to possess excellent combined superconducting and mechanical properties. The favorable microstructure of the HTS BPSCCO (2223) matrix and the (MgO)w/BPSCCO interfacial properties are recognized to be the critical material parameters governing electric and mechanical performance of the HTS composite. Effects of detailed microstructure variables on superconducting properties of the composite are addressed, including the aspect ratio and the orientation of MgO whiskers, structure, and texturing of the BPSCCO matrix phase, and the (MgO)w/BPSCCO interfacial microchemistry. The results obtained reveal unique characteristics of the reinforcing MgO whiskers dispersion, distribution, and orientation in the HTS composites. The evolution of the microstructure and texture of thematrix BPSCCO grains has also been studied in the process of repeated hot-pressing and annealing heat treatment. The thermodynamic compatibility and microchemistry in the MgO whisker and BPSCCO interfaceare also examined.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gubser, D. U., Miller, M. M., Toth, L., Rayne, R., Lawrence, S., Alford, N. M., and Buttons, T. W., IEEE Trans. Magn. 27 (2), 18541857 (1991).CrossRefGoogle Scholar
2.Slade, P. G.et al., IEEE Trans. Power Delivery, 27 (2), 507515 (1992).CrossRefGoogle Scholar
3.Moon, F. C. and Chang, P. Z., Appl. Phys. Lett. 56 (4), 397399 (1990).CrossRefGoogle Scholar
4.McMichael, C. K., Ma, K.B., Lamb, M.A., Lin, M.W., Chow, L., Meng, R. L., Por, P. H., and Chu, W. K., Appl. Phys. Lett. 60 (15), 18931895(1992).CrossRefGoogle Scholar
5.Homeny, J., Vaughn, W.L., and Ferber, M.K., Am. Ceram. Soc. Bull. 66 (12), 333338 (1987).Google Scholar
6.Wei, G. C. and Becher, P. F., Am. Ceram. Soc. Bull. 64 (12), 298304 (1985).Google Scholar
7.Caputo, A. J., Stinton, D. P., Lowden, R. A., and Besmann, T. M., Am. Ceram. Soc. Bull. 66 (2), 368372 (1987).Google Scholar
8.Soylu, B., Admopoulos, N., Glowacka, D. M., and Evetts, J. E., Appl. Phys. Lett. 60 (25), 31833185 (1992).CrossRefGoogle Scholar
9.Wong, M.S., Miyase, A., Yuan, Y.S., and Wang, S.S., J. Am. Ceram. Soc. 77 (11), 28332840 (1994).CrossRefGoogle Scholar
10.Miyase, A., Yuan, Y. S., Wong, M. S., Schon, J.S., and Wang, S.S., Supercond. Sci. Technol. 8, 626637 (1995).CrossRefGoogle Scholar
11.Yuan, Y. S., Wong, M. S., and Wang, S. S., J. Mater. Res. 11, 817 (1995).CrossRefGoogle Scholar
12.Yuan, Y. S., Wong, M. S., and Wang, S. S., unpublished research.Google Scholar
13.Brubaker, B. D., United States Patent No. 3,711,599 (1973).Google Scholar
14.Gao, W. and Vander, J.B.Sande, Supercond. Sci. Technol. 5, 318328 (1992).CrossRefGoogle Scholar
15.Homeny, J., in Ceramic-Matrix Composites, edited by Warren, R. (Chapman and Hall, New York, 1992), pp. 245270.Google Scholar
16.Borofka, J. C., Hendrix, B. C., Attarwala, A. I., and Tien, J. K., J. Am. Ceram. Soc. 76, 10111016 (1993).CrossRefGoogle Scholar
17.Yuan, Y. S., Wong, M.S., and Wang, S. S., Physica C 250, 247255 (1995).CrossRefGoogle Scholar
18.Becher, P. F., Tiegs, T. N., Ogle, J.C., and Warwick, W. H., in Fracture Mechanics of Ceramics, Vol. 7: Composites, Impact, Statistics, and High Temperature Phenomena, edited by Bradt, R. C., Hasselman, D. P. H., Evans, A. G., and Lange, F. F. (Plenum Press, New York, 1986), pp. 6173.CrossRefGoogle Scholar