Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-30T21:00:19.122Z Has data issue: false hasContentIssue false

YBCO film growth on ultrathin Ag layers

Published online by Cambridge University Press:  03 March 2011

C. Zhong
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556
S.T. Ruggiero
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556
R. Fletcher
Affiliation:
Wright Laboratory, Materials Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433
E. Moser
Affiliation:
Wright Laboratory, Materials Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433
Get access

Abstract

We discuss our results on the growth of YBCO thin films on ultrathin (1-10 nm) Ag underlayers. Substrates were LaAlO3. YBCO was sputter deposited and Ag thermally evaporated. It was observed that Tc remained relatively unaffected by the Ag underlayers, ranging from 86-88 K. Critical currents were found to be consistent with YBCO grown on bulk Ag when the Ag underlayer film reached complete coverage (∼9 nm). Films grown on Ag showed a marked tendency for microcrystalline growth on the basis of atomic-force microscopy (AFM) results.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cheung, C. T. and Ruckenstein, E., J. Mater. Res. 4, 1 (1989).CrossRefGoogle Scholar
2Dwir, B., Affronte, M., and Pavuna, D., Appl. Phys. Lett. 55, 399 (1988).Google Scholar
3Miller, J. H. Jr., Holder, S. L., Hunn, J. D., and Holder, G. H., Appl. Phys. Lett. 54, 2256 (1989).CrossRefGoogle Scholar
4Tarte, E. J., Lean, H. W., Lean, Z. H., Barber, Z. H., Waldram, J. R., and Somekh, R. E., Physica C 185–187, 2575 (1991).Google Scholar
5DiIorio, M. S., Yoshizumi, S., Yang, K-Y., Zhang, J., and Maung, M., Appl. Phys. Lett. 58, 2552 (1991).CrossRefGoogle Scholar
6Ono, R. H., Beall, J. A., Cromar, M. W., Harvey, T. E., Johansson, M. E., Reintsema, C. D., and Rudman, D. A., Appl. Phys. Lett. 59, 1126 (1991).Google Scholar
7Zhao, J., Li, Y. Q., Chen, C. S., Norris, P., Gallios, B., Kear, B., and Wessels, B. W., Appl. Phys. Lett. 58, 89 (1991).Google Scholar
8Chen, L., Piazza, T. W., Schmidt, B. E., Kelsey, J. E., Kaloyeros, A. E., Hazelton, D. W., Walker, M. S., Luo, L., Dye, R. C., Maggiore, C. J., Wilkins, D. J., and Knorr, D. B., J. Appl. Phys. 73, 7563 (1993).Google Scholar
9Witanachchi, S., Patel, S., Zhu, Y. Z., Kwok, H. S., and Shaw, D. T., J. Mater. Res. 5, 717 (1990).Google Scholar
10Russo, R. E., Reade, R. P., and McMillan, J. M., J. Appl. Phys. 68, 1354 (1990).CrossRefGoogle Scholar
11Kumar, A., Ganapathi, L., Kanetkar, S. M., and Narayan, J., Appl. Lett. 57, 2594 (1990).Google Scholar
12Saitoh, J., Fufutomi, M., Tanaka, Y., Asano, T., Maeda, H., and Takahara, H., Jpn. J. Appl. Phys. 29, L1117 (1990).Google Scholar
13Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1992).Google Scholar
14Ma, Q. Y., Yang, E. S., and Chang, C-A., J. Appl. Phys. 66, 1866 (1989).Google Scholar
15Conductus Inc., Sunnyvale, CA.Google Scholar
16See, for example: van Loen, E. J., Iwami, M., Tromp, R. M., van der Veen, J. F., and Saris, F. W., Thin Solid Films 104, 9 (1983) Matthews, J. W., in Physics of Thin Films (Academic Press, New York, 1967); Pashley, D. W., Stowell, M. J., Jacobs, M. H., and Law, T. J., Philos. Mag. 10, 127 (1964), and references therein.Google Scholar
17Stroscio, J. A., Pierce, D. T., and Dragoset, R. A., Phys. Rev. Lett. 70, 3615 (1993).Google Scholar
18Michely, T., Hohage, M., Bott, M., and Comsa, G., Phys. Rev. Lett. 70, 3943 (1993).Google Scholar