Published online by Cambridge University Press: 11 October 2017
With the improvement of the bias instability of Micro-Electromechanical Systems (MEMS) gyroscopes, the g-sensitivity error is gradually becoming one of the more important factors that affects the dynamic accuracy of a MEMS gyroscope. Hence there is a need for correcting the g-sensitivity error. However, the traditional calibration of g-sensitivity error uses a centrifuge. The calibration conditions are harsh, the process is complex and the cost is relatively high. In this paper, a fast and simple method of g-sensitivity error calibration for MEMS gyroscopes is proposed. With respect to the bias and random noise of a MEMS gyroscope, the g-sensitivity error magnitude is relatively small and it is simultaneously coupled with the Earth's rotation rate. Therefore, in order to correct the g-sensitivity error, this work models the calibration for g-sensitivity error coefficients, designs an (8+N)-position calibration scheme, and then proposes a fitting method for g-sensitivity error coefficients based on the Newton iteration and least squares methods. Multi-group calibration experiments designed on a MEMS Inertial Measurement Unit (MEMS IMU) product demonstrate that the proposed method can calibrate g-sensitivity error coefficients and correct the g-sensitivity error effectively and simply.