Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T21:13:19.454Z Has data issue: false hasContentIssue false

The first report of a vauxiid sponge from the Cambrian Chengjiang Biota

Published online by Cambridge University Press:  20 August 2019

Cui Luo
Affiliation:
CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China
Fangchen Zhao
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China
Han Zeng
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China Department of Paleobiology, National Museum of Natural History, PO Box 37012, MRC-121, Washington, DC 20013-7012, USA

Abstract

Non-spicular sponges constitute >8% of the extant sponge biodiversity at the species level, yet their evolutionary history is poorly known due to a sparse fossil record. The genus Vauxia, previously only known from middle Cambrian (Miaolingian, Wuliuan) Lagerstätten, was regarded as the earliest fossil record of non-spicular demosponges. Here we describe the first vauxiid sponge, Vauxia leioia new species, from the early Cambrian Chengjiang Biota (Series 2, Stage 3). This sponge exhibits a double-layered fibrous skeleton: the mesh and fiber thickness of the endosomal layer are irregular while the dermal layer, which directly connects with the endosomal skeleton without intermediate supporting fibers, is regular in both aspects. Measurements using scanning electron microscope and Raman spectroscopy revealed that the endosomal fibers are composed of carbonaceous material, but are tomographically indiscernible from the host rock, while the dermal fibers are preserved as impressions without obvious accumulation of carbonaceous material. Although the original composition of the dermal skeleton is now hard to establish, we cannot rule out that it was siliceous. The morphological characters of V. leioia n. sp. represent an intermediate state between other Vauxia species and the recently established vauxiid genus Angulosuspongia. However, more data are required to reconstruct the phylogenetic relationship among these taxa.

UUID: http://zoobank.org/0ebb91b8-5dad-420f-bb2c-dc203d37bebd

Type
Articles
Copyright
Copyright © 2019, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergquist, P.R., 1978, Sponges: Berkeley and Los Angeles, University of California Press, 268 p.Google Scholar
Botting, J.P., and Muir, L.A., 2018, Early sponge evolution: a review and phylogenetic framework: Palaeoworld, v. 27, p. 129.Google Scholar
Botting, J.P., Muir, L.A., and Lin, J.P., 2013, Relationships of the Cambrian Protomonaxonida (Porifera): Palaeontologia Electronica, no. 16.2.9A, doi:10.26879/339.Google Scholar
Botting, J.P., Cárdenas, P., and Peel, J.S., 2014, A crown-group demosponge from the early Cambrian Sirius Passet Biota, North Greenland: Palaeontology, v. 58, p. 3543.Google Scholar
Domingos, C., Lage, A., and Muricy, G., 2016, Overview of the biodiversity and distribution of the class Homoscleromorpha in the tropical western Atlantic: Journal of the Marine Biological Association of the United Kingdom, v. 96, p. 379389.Google Scholar
Ehrlich, H., Maldonado, M., Spindler, K., Eckert, C., Hanke, T., Born, R., Goebel, C., Simon, P., Heinemann, S., and Worch, H., 2007, First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (Demospongia: Porifera): Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, v. 308, p. 347356.Google Scholar
Ehrlich, H., Simon, P., Carrillo-Cabrera, W., Bazhenov, V.V., Botting, J.P., Ilan, M., Ereskovsky, A.V., Muricy, G., Worch, H., Mensch, A., Born, R., Springer, A., Kummer, K., Vyalikh, D.V., Molodtsov, S.L., Kurek, D., Kammer, M., Paasch, S., and Brunner, E., 2010, Insights into chemistry of biological materials: newly discovered silica-aragonite-chitin biocomposites in demosponges: Chemistry of Materials, v. 22, p.14621471.Google Scholar
Ehrlich, H., Rigby, J.K., Botting, J.P., Tsurkan, M.V., Werner, C., Schwille, P., Petrášek, Z., Pisera, A., Simon, P., Sivkov, V.N., Vyalikh, D.V., Molodtsov, S.L., Kurek, D., Kammer, M., Hunoldt, S., Born, R., Stawski, D., Steinhof, A., Bazhenov, V.V., and Geisler, T., 2013, Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta: Scientific Reports, v. 3, no. 3497, doi:10.1038/srep03497.Google Scholar
Finks, R.M., 1960, Late Paleozoic sponge faunas of the Texas region. The siliceous Sponges: Bulletin of the American Museum of Natural History, v. 120, p. 1160.Google Scholar
Forchielli, A., Steiner, M., Hu, S.X., and Keupp, H., 2012, Taphonomy of Cambrian (Stage 3/4) sponges from Yunnan (South China): Bulletin of Geosciences, v. 87, p. 133142.Google Scholar
Friesenbichler, E., Richoz, S., Baud, A., Krystyn, L., Sahakyan, L., Vardanyan, S., Peckmann, J., Reitner, J., and Heindel, K., 2018, Sponge-microbial build-ups from the lowermost Triassic Chanakhchi section in southern Armenia: microfacies and stable carbon isotopes: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 490, p. 653672.Google Scholar
Gazave, E., Lavrov, D.V., Cabrol, J., Renard, E., Rocher, C., Vacelet, J., Adamska, M., Borchiellini, C., and Ereskovsky, A.V., 2013, Systematics and molecular phylogeny of the family Oscarellidae (Homoscleromorpha) with description of two new Oscarella species: Plos One, v. 8, no. e63976, doi:10.1371/journal.pone.0063976.Google Scholar
Gross, J., Sokal, Z., and Rougvie, M., 1956, Structural and chemical studies on the connective tissue of marine sponges: Journal of Histochemistry & Cytochemistry, v. 4, p. 227246.Google Scholar
de Laubenfels, M.W., 1955, Porifera, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Part E, Archaeocyatha and Porifera: New York and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. E21E122.Google Scholar
Lee, J.-H., Chen, J., and Chough, S.K., 2015, The middle–late Cambrian reef transition and related geological events: a review and new view: Earth-Science Reviews, v. 145, p. 6684.Google Scholar
Luo, C., 2015, “Keratose” sponge fossils and microbialites: a geobiological contribution to the understanding of metazoan origin [Ph.D. dissertation]: Göttingen, University of Göttingen, 151 p.Google Scholar
Luo, C., and Reitner, J., 2014, First report of fossil “keratose” demosponges in Phanerozoic carbonates: preservation and 3-D reconstruction: Naturwissenschaften, v. 101, p. 467477.Google Scholar
Luo, C., and Reitner, J., 2016, “Stromatolites” built by sponges and microbes—a new type of Phanerozoic bioconstruction: Lethaia, v. 49, p. 555570.Google Scholar
Maldonado, M., 2009, Embryonic development of verongid demosponges supports the independent acquisition of spongin skeletons as an alternative to the siliceous skeleton of sponges: Biological Journal of the Linnean Society, v. 97, p. 427447.Google Scholar
Morrow, C., and Cárdenas, P., 2015, Proposal for a revised classification of the Demospongiae (Porifera): Frontiers in Zoology, v. 12, no. 7, doi:10.1186/s12983-015-0099-8.Google Scholar
Park, J., Lee, J.-H., Hong, J., Choh, S.-J., Lee, D.-C., and Lee, D.-J., 2015, An Upper Ordovician sponge-bearing micritic limestone and implication for early Palaeozoic carbonate successions: Sedimentary Geology, v. 319, p. 124133.Google Scholar
Philippe, H., Derelle, R., Lopez, P., Pick, K., Borchiellini, C., Boury-Esnault, N., Vacelet, J., Renard, E., Houliston, E., Quéinnec, E., Da Silva, C., Wincker, P., Le Guyader, H., Leys, S., Jackson, D.J., Schreiber, F., Erpenbeck, D., Morgenstern, B., Wörheide, G., and Manuel, M., 2009, Phylogenomics revives traditional views on deep animal relationships: Current Biology, v. 19, p. 706712.Google Scholar
Rigby, J.K., 1980, The new Middle Cambrian sponge Vauxia magna from the Spence Shale of northern Utah and taxonomic position of the Vauxiidae: Journal of Paleontology, v. 54, p. 234240.Google Scholar
Rigby, J.K., 1986, Sponges of the Burgess Shale (Middle Cambrian), British Columbia: Toronto, University of Toronto Press, 105 p.Google Scholar
Rigby, J.K., and Collins, D., 2004, Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia: Toronto, Royal Ontario Museum, 155 p.Google Scholar
Sollas, W.J., 1885, A classification of the sponges: Annals of Natural History (Series 5), v. 16, 395 p.Google Scholar
Szatkowski, T., and Jesionowski, T., 2017, Hydrothermal synthesis of spongin-based materials, in Ehrlich, H., ed., Extreme Biomimetics: Cham, Springer International Publishing, p. 251274.Google Scholar
van Soest, R.W.M, Boury-Esnault, N., Hooper, J.N.A., Rützler, K., de Voogd, N.J., Alvarez, B., Hajdu, E., Pisera, A.B., Manconi, R., Schönberg, C., Klautau, M., Picton, B., Kelly, M., Vacelet, J., Dohrmann, M., Díaz, M.-C., Cárdenas, P., Carballo, J. L., Ríos, P., Downey, R., 2018, World Porifera Database. http://www.marinespecies.org/porifera [Sept. 2018].Google Scholar
Walcott, C.D., 1920, Cambrian geology and paleontology IV, No.6 Middle Cambrian Spongiae: Washington, D.C., Smithsonian Institution, 363 p.Google Scholar
Wang, H., Zhang, Z., Holmer, L.E., Hu, S., Wang, X., and Li, G., 2012, Peduncular attached secondary tiering acrotretoid brachiopods from the Chengjiang fauna: implications for the ecological expansion of brachiopods during the Cambrian explosion: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 323–325, p. 6067.Google Scholar
Wood, R.A., 2011, Paleoecology of the earliest skeletal metazoan communities: Implications for early biomineralization: Earth-Science Reviews, v. 106, p. 184190.Google Scholar
Wysokowski, M., Petrenko, I., Stelling, A. L., Stawski, D., Jesionowski, T., and Ehrlich, H., 2015, Poriferan chitin as a versatile template for extreme biomimetics: Polymers, v. 7, p. 235265.Google Scholar
Yang, C., Li, X.-H., Zhu, M., Condon, D.J., and Chen, J., 2018, Geochronological constraint on the Cambrian Chengjiang biota, South China: Journal of the Geological Society, doi:10.1144/jgs2017-103.Google Scholar
Yang, X., Zhao, Y., Babcock, L.E., and Peng, J., 2017a, A new vauxiid sponge from the Kaili Biota (Cambrian Stage 5), Guizhou, South China: Geological Magazine, v. 154, p. 13341343.Google Scholar
Yang, X.L., Zhao, Y.L., Babcock, L.E., and Peng, J., 2017b, Siliceous spicules in a vauxiid sponge (Demospongia) from the Kaili Biota (Cambrian Stage 5), Guizhou, South China. Scientific Reports, v. 7, no. 42945, doi:10.1038/srep42945.Google Scholar
Zhao, F., Hu, S., Caron, J.-B., Zhu, M., Yin, Z., and Lu, M., 2012, Spatial variation in the diversity and composition of the Lower Cambrian (Series 2, Stage 3) Chengjiang Biota, Southwest China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 346–347, p. 5465.Google Scholar