Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T10:47:18.276Z Has data issue: false hasContentIssue false

Illusioluidia teneryi n. gen. and sp. (Asteroidea: Echinodermata) from the Pennsylvanian of Texas, and its homeomorphy with the extant genus Luidia Forbes

Published online by Cambridge University Press:  19 May 2016

Daniel B. Blake
Affiliation:
Department of Geology, University of Illinois, Urbana 61801
Thomas E. Guensburg
Affiliation:
Department of Geography and Earth Science, Southern Illinois University, Edwardsville 62026

Abstract

Illusioluidia teneryi is a new genus and species of asteroid echinoderm described from the Missourian (Upper Pennsylvanian) Wolf Mountain Shale of Texas. Illusioluidia is important because it is strongly homeomorphic with modern Luidia; Luidia has been considered primitive among living asteroids by some authors. Illusioluidia, however, is not ancestral to Luidia or any other modern genus; similarities are convergent. Luidia is a predator, largely on active invertebrates (other echinoderms, mollusks), whereas Illusioluidia is inferred to have been a small-particle feeder. Homeomorphy reflects neither descent nor feeding habits; environmental controls are suggested.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blainville, H. M. de. 1830. Zoophytes. Dictionnaire des Sciences Naturelles, 60. Paris.Google Scholar
Blake, D. B. 1982. Somasteroidea, Asteroidea, and the affinities of Luidia (Platasterias) latiradiata. Palaeontology, 25:167191.Google Scholar
Blake, D. B. 1983. Some biological controls on the distribution of shallow water sea stars (Asteroidea: Echinodermata). Bulletin of Marine Science, 33:703712.Google Scholar
Blake, D. B. 1987. A classification and phylogeny of post-Palaeozoic sea stars (Asteroidea, Echinodermata). Journal of Natural History, 21:481528.Google Scholar
Blake, D. B. 1988. Paxillosidans are not primitive asteroids: a hypothesis based on functional considerations, p. 309314. In Burke, R. D., Mladenov, P. V., Lambert, P., and Parsley, R. L. (eds.), Echinoderm Biology. A. A. Balkema, Rotterdam.Google Scholar
Blake, D. B. 1989. Asteroidea: functional morphology, classification and phylogeny, p. 179223. In Jangoux, M. and Lawrence, J. M. (eds.), Echinoderm Studies 3. A. A. Balkema, Rotterdam.Google Scholar
Blake, D. B., and Guensburg, T. E. 1988. The water vascular system and functional morphology of Paleozoic asteroids. Lethaia, 21:189206.Google Scholar
Brown, L. F. Jr., Cleaves, A. W. II, and Erxleben, A. M. 1973. Pennsylvanian depositional systems in north-central Texas. Texas Bureau of Economic Geology Guidebook 14, 122 p.Google Scholar
Clark, A. M. 1982. Notes on Atlantic Asteroidea, 2. Luidiidae. Bulletin British Museum of Natural History (Zoology), 42:157184.Google Scholar
Fell, H. B. 1963. The phylogeny of sea-stars. Philosophical Transactions of the Royal Society, London, Ser. B, 246:381435.Google Scholar
Gale, A. S. 1987. Phylogeny and classification of the Asteroidea (Echinodermata). Zoological Journal of the Linnean Society, 89:107132.CrossRefGoogle Scholar
Gislén, T. 1924. Echinoderm studies. Zoological Bidrag Uppsala, 9:1316.Google Scholar
Heddle, D. 1967. Versatility of movement and the origin of asteroids, p. 125142. In Millott, N. (ed.), Echinoderm Biology. Zoological Society of London, Academic Press, New York.Google Scholar
Jangoux, M. 1975. Note sur le genre Tethyaster Sladen (Echinodermata, Asteroidea). Revue Zoologique Africaine, 89:761768.Google Scholar
Jangoux, M. 1982. Food and feeding mechanisms: Asteroidea, p. 117160. In Jangoux, M. and Lawrence, J. L. (eds.), Echinoderm Nutrition. A. A. Balkema, Rotterdam.Google Scholar
Kier, R. S., Brown, L. F. Jr., and McBride, E. F. 1979. The Mississippian and Pennsylvanian (Carboniferous) Systems in the United States. U.S. Geological Survey Professional Paper, 1110:S1S41.Google Scholar
McClintock, J. B., and Lawrence, J. M. 1985. Characteristics of foraging in the soft-bottom benthic starfish Luidia clathrata (Echinodermata: Asteroidea): prey selectivity, switching behavior, functional responses and movement patterns. Oecologia, 66:291298.Google Scholar
McKnight, D. G. 1977. Classification of Recent paxillosid sea-stars (Asterozoa: Echinodermata). New Zealand Oceanographic Records, 3:113119.Google Scholar
Röttger, R., Astheimer, H., Spindler, M., and Steinborn, J. 1972. Okologie von Asterocheres lilljeborgi, eines auf Henricia sanguinolenta parasitisch lebenden Copepoden. Marine Biology, 13:259266.Google Scholar
Schöndorf, F. 1909a. Paläozoische Seesterne Deutschlands. xI. Die echten Asteriden der Rheinischen Grauwacke. I. Palaeontographica, 65:37112.Google Scholar
Schöndorf, F. 1909b. Die Asteriden des Russischen Karbon. Palaeontographica, 65:323338.Google Scholar
Sloan, N. A. 1980. Aspects of the feeding biology of asteroids, p. 57124. In Barnes, M. (ed.), Oceanography and Marine Biology Annual Review 18. Aberdeen University Press.Google Scholar
Spencer, W. K., and Wright, C. W. 1966. Asterozoans, p. U4U107. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. U, Echinodermata 3. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar