Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T11:17:36.825Z Has data issue: false hasContentIssue false

New metrics to differentiate species of Stenopterygius (Reptilia: Ichthyosauria) from the Lower Jurassic of southwestern Germany

Published online by Cambridge University Press:  20 May 2016

Erin E. Maxwell*
Affiliation:
Staatliches Museum für Naturkunde, Rosenstein 1, 70191 Stuttgart, Germany; and Museum für Naturkunde, Invalidenstrasse 43, 10115 Berlin, Germany,

Abstract

Ichthyosaurs represent one of the most highly specialized lineages of marine reptiles, but our understanding of the evolution of this group is based on specimens found at a surprisingly small number of stratigraphic intervals and localities. The Lower Jurassic (Toarcian) Posidonia Shale of southwestern Germany is one of the richest ichthyosaur-bearing formations in the world and has produced thousands of skeletons, including specimens with preserved soft tissue, and fetal remains inside the body cavity. The most abundant ichthyosaur genus in the Posidonia Shale is Stenopterygius. In spite of almost 200 years of research effort, the number of species in this genus is still a point of active disagreement in the literature. Here, bivariate and multivariate analyses are used to classify both articulated and disarticulated skeletons to the level of species, using measurement data from individual cranial and postcranial elements. Unlike previous classification attempts, this technique pinpoints ontogenetically conserved differences in size and proportion between the species, and so can be applied to adult, subadult, and neonatal specimens. Using this method, three species of Stenopterygius, S. quadriscissus, S. triscissus, and S. uniter are differentiated.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernard, A., Lécuyer, C., Vincent, P., Amiot, R., Bardet, N., Buffetaut, E., Cuny, G., Fourel, F., Martineau, F., Mazin, J-M., and Prieur, A. 2010. Regulation of body temperature by some Mesozoic marine reptiles. Science, 328:13791382.Google Scholar
Blainville, H. M. D. 1835. Description de quelques espèces de reptiles de la Californie, précédé de l'analyse d'un système général d'erpétologie et d'amphibiologie. Nouvelles Annales du Muséum d'Histoire Naturelle, Paris, 4:233296.Google Scholar
Caldwell, M. W. 1997. Limb ossification patterns of the ichthyosaur Stenopterygius, and a discussion of the proximal tarsal row of ichthyosaurs and other neodiapsid reptiles. Zoological Journal of the Linnean Society, 120:125.Google Scholar
Canoville, A. and Laurin, M. 2010. Evolution of humeral microanatomy and lifestyle in amniotes, and some comments on palaeobiological inferences. Biological Journal of the Linnean Society, 100:384406.Google Scholar
De Buffrenil, V. and Mazin, J-M. 1990. Bone histology of the ichthyosaurs: Comparative data and functional interpretation. Paleobiology, 16:435447.Google Scholar
Fernández, M. S., Archuby, F., Talevi, M., and Ebner, R. 2005. Ichthyosaurian eyes: Paleobiological information content in the sclerotic ring of Caypullisaurus (Ichthyosauria, Ophthalmosauria). Journal of Vertebrate Paleontology, 25:330337.Google Scholar
Gibbs, N. J. and Kirk, E. J. 2001. Erupted upper teeth in a male sperm whale, Physeter macrocephalus. New Zealand Journal of Marine and Freshwater Research, 35:325327.CrossRefGoogle Scholar
Godefroit, P. 1994. Les reptiles marins du Toarcien (Jurassique Inferieur) Belgo-Luxembourgeois. Mémoires pour Servir à l'Explication des Cartes Géologiques et Minières de la Belgique, 39:187.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4:19.Google Scholar
Huene, F. V. 1922. Die Ichthyosaurier des Lias und ihre Zusammenhänge. Verlag von Gebrüder Borntraeger, Berlin, 4, 114 p.Google Scholar
Huene, F. V. 1931. Neue Studien über Ichthyosaurier aus Holzmaden. Abhandlungen der Senckenbergischen naturforschenden Gesellschaft, 42:345382.Google Scholar
Huene, F. V. 1939. Ein ganzes Ichthyosaurier-Skelett aus den west-schweizerischen Voralpen. Mitteilungen der Naturforschenden Gesellschaft, 1939:114.Google Scholar
Huene, F. V. 1949. Ein Versuch, die Stenopterygius-Arten des Oberen Lias in Zusammenhang zu bringen. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Monatschefte, 1949:8088.Google Scholar
Hungerbühler, A. 1994. Recently identified type material of the Lower Jurassic ichthyosaur Stenopterygius in the Geological-Paleontological Institute, Tübingen. Paläontologische Zeitschrift, 68:245258.Google Scholar
Jaekel, O. 1904. Die Wirbeltiere. Eine Übersicht über die fossilen und lebenden Formen. Gebrüder Borntraeger, Berlin, VIII + 252 p.Google Scholar
Johnson, R. 1979. The osteology of the pectoral complex of Stenopterygius Jaekel (Reptilia: Ichthyosauria). Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen, 159:4186.Google Scholar
Littke, R., Baker, D. R., Leythaeuser, D., and Rullkötter, J. 1991. Keys to the depositional history of the Posidonia Shale (Toarcian) in the Hils Syncline, northern Germany, p. 311333. InTyson, R. V. and Pearson, T. H.(eds.), Modern and ancient continental shelf anoxia.Vol. 58. Geological Society Special Publication.Google Scholar
Maisch, M. W. 1998. Kurze Übersicht der Ichthyosaurier des Posidoniaschiefers mit Bemerkungen zur Taxonomie der Stenopterygiidae und Temnodontosauridae. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 209:401431.Google Scholar
Maisch, M. W. 2008. Revision der Gattung Stenopterygius Jaekel, 1904 emend. von Huene, 1922 (Reptilia: Ichthyosauria) aus dem unteren Jura Westeuropas. Paleodiversity, 1:227271.Google Scholar
Maisch, M. W. and Matzke, A. T. 2000. The Ichthyosauria. Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie), 298:1159.Google Scholar
Martill, D. M. 1993. Soupy substrates: a medium for the exceptional preservation of ichthyosaurs of the Posidonia Shale (Lower Jurassic) of Germany. Kaupia, 2:7797.Google Scholar
Maxwell, E. E., Caldwell, M. W., and Lamoureux, D. O. 2010. Tooth histology in the Cretaceous ichthyosaur Platypterygius australis, and its significance for the conservation and divergence of mineralized tooth tissues in amniotes. Journal of Morphology, 272:129135.Google Scholar
McGowan, C. 1973. Differential growth in three ichthyosaurs: Ichthyosaurus communis, I. breviceps, and Stenopterygius quadriscissus (Reptilia, Ichthyosauria). Life Sciences Contributions, Royal Ontario Museum, 93:121.Google Scholar
McGowan, C. 1974a. A revision of the latipinnate ichthyosaurs of the Lower Jurassic of England (Reptilia: Ichthyosauria). Life Sciences Contributions, Royal Ontario Museum, 100:130.Google Scholar
McGowan, C. 1974b. A revision of the longipinnate ichthyosaurs of the Lower Jurassic of England, with descriptions of two new species (Reptilia: Ichthyosauria). Life Sciences Contributions, Royal Ontario Museum, 97:137.Google Scholar
McGowan, C. 1979. A revision of the Lower Jurassic ichthyosaurs of Germany with descriptions of two new species. Palaeontographica Abt. A, 166:93135.Google Scholar
McGowan, C. and Milner, A. C. 1999. A new Pliensbachian ichthyosaur from Dorset, England. Palaeontology, 42:761768.Google Scholar
McGowan, C. and Motani, R. 2003. Ichthyopterygia. Verlag Dr. Friedrich Pfeil, München, 8, 175 p.Google Scholar
Motani, R. 1999. Phylogeny of the Ichthyopterygia. Journal of Vertebrate Paleontology, 19:472495.Google Scholar
Motani, R. 2005. Evolution of fish-shaped reptiles (Reptilia: Ichthyopterygia) in their physical environments and constraints. Annual Review of Earth and Planetary Sciences, 33:395420.Google Scholar
Quenstedt, F. A. 1856. Der Jura. H. Laupp, Tübingen, VI + 842 p.Google Scholar
Quinn, G. P. and Keough, M. J. 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge.Google Scholar
Riegraf, W. V., Werner, G., and Lörcher, F. 1984. Der Posidonienschiefer. Biostratigraphie, Fauna und Fazies des südwestdeutschen Untertoarciums (Lias ε). Ferdinand Enke, Stuttgart, 195 p.Google Scholar
Röhl, H-J., Schmid-Röhl, A., Oschmann, W., Frimmel, A., and Schwark, L. 2001. Erratum to “The Posidonia Shale (Lower Toarcian) of SW-Germany: An oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 169:273299.CrossRefGoogle Scholar
Sander, P. M. 2000. Ichthyosauria: their diversity, distribution and phylogeny. Paläontologische Zeitschrift, 74:135.Google Scholar
Urlichs, M., Wild, R., and Ziegler, B. 1979. Fossilien aus Holzmaden. Stuttgarter Beiträge zur Naturkunde Serie C, 11:134.Google Scholar
Werth, A. J. 2006. Mandibular and dental variation and the evolution of suction feeding in Odontoceti. Journal of Mammalogy, 87:579588.CrossRefGoogle Scholar
Supplementary material: File

Maxwell supplementary material

Tables S1 and S2

Download Maxwell supplementary material(File)
File 161.8 KB
Supplementary material: File

Maxwell supplementary material

Tables S1 and S2

Download Maxwell supplementary material(File)
File 161.8 KB