Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T04:24:08.396Z Has data issue: false hasContentIssue false

Paleoecological and phylogenetic implications of asexual reproduction in the Permian scleractiniamorph Numidiaphyllum

Published online by Cambridge University Press:  20 May 2016

Yoichi Ezaki*
Affiliation:
Department of Geosciences, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka 558-8585, Japan,

Abstract

Numidiaphyllum is one of the Paleozoic scleractiniamorphs. The genus is characterized by a poorly integrated, uniserial fasciculate form with an epithecate wall and simple morphological traits. Parent corallites are divided into several daughter corallites using one mode of division among several theoretically possible alternatives. Bipartite increase is most common, followed by hexapartite and then tripartite increase. Daughter corallites possess relatively large diameters from the beginning, along with a robust colonial pattern. This parricidal increase caused the morphologies of both parent and daughter corallites to be greatly altered and to show high morphological variability. For ecological and structural reasons, co-occurring daughter corallites generally are equal or subequal in size. Daughter corallites initially show a bilateral symmetry in both outline and septal arrangement during the course of hystero-ontogeny. However, this symmetry results only from structural necessity and is transitory. It is not homologous with the bilaterality of body plans characteristic of anthozoan groups. The morphological simplicity, related parricidal reproduction, and resulting poorly integrated growth form as seen in Numidiaphyllum, all suggest conservative features that could have resulted from phylogenetic antiquity within the scleractiniamorph body plan. Those generalized features are not themselves related to immediate phylogenetic relationships with any simply constructed rugosan group, nor would they have been due to surrounding, stressful ecologic conditions. They may have been phylogenetic-specific.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berntson, E. A., France, S. C., and Mullineaux, L. S. 1999. Phylogenetic relationships within the Class Anthozoa (Phylum Cnidaria) based on nuclear 18S rDNA sequences. Molecular Phylogenetics and Evolution, 13:417433.Google Scholar
Chen, C. A., Odorico, D. M., Lohuis, M. Ten, Veron, J. E. N., and Miller, D. J. 1995. Systematic relationships within the Anthozoa (Cnidaria: Anthozoa) using the 5'-end of the 28S rDNA. Molecular Phylogenetics and Evolution, 4:175183.Google Scholar
Coates, A. G., and Jackson, J. B. C. 1987. Clonal growth, algal symbiosis, and reef formation in corals. Paleobiology, 13:363378.Google Scholar
Coates, A. G., and Oliver, W. A. Jr. 1973. Coloniality in zoantharian corals, p. 327. In Boardman, R. S., Cheetham, A. H., and Oliver, W. A. Jr. (eds.), Animal Colonies: Development and Function Through Time. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.Google Scholar
Copper, P. 1994. Ancient reef ecosystem expansion and collapse. Coral Reefs, 13:311.Google Scholar
Cuif, J. P. 1972. Recherches sur les Madréporaires du Trias. I. Famille des Stylophyllidae. Bulletin du Muséum national d'histoire naturelle, 97:211291.Google Scholar
Cuif, J. P. 1974. Recherches sur les Madréporaires du Trias. II. Astraeoida. Révision des genres Montlivaltia et Thecosmilia. Bulletin du Muséum national d'histoire naturelle, 275:293400.Google Scholar
Cuif, J. P. 1975. Recherches sur les Madréporaires du Trias. III. Étude des structures pennulaires chez les Madréporaires triasiques. Bulletin du Muséum national d'histoire naturelle, 310:45127.Google Scholar
Elias, R. J., and Young, G. A. 2001. Rugose coral morphology during a time of crisis: the latest Ordovician to earliest Silurian Edgewood Province in Laurentia. Bulletin of the Tohoku University Museum, no. 1:3440.Google Scholar
Erwin, D. H. 1993. The Great Paleozoic Crisis. Columbia University Press, New York, 327 p.Google Scholar
Erwin, D. H. 1996. Understanding biotic recoveries: extinction, survival, and preservation during the end-Permian mass extinction, p. 398418. In Jablonski, D., Erwin, D. H., and Lipps, J. H. (eds.), Evolutionary Paleobiology. University of Chicago Press, Chicago.Google Scholar
Erwin, D. H. 1998. After the end: recovery from extinction. Science, 279:13241325.Google Scholar
Ezaki, Y. 1993. The last representatives of Rugosa in Abadeh and Julfa, Iran: survival and extinction. Courier Forschungsinstitut Senckenberg, no. 164:7580.Google Scholar
Ezaki, Y. 1994. Patterns and paleoenvironmental implications of end-Permian extinction of Rugosa in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 107:165177.Google Scholar
Ezaki, Y. 1997a. The Permian coral Numidiaphyllum: new insights into anthozoan phylogeny and Triassic scleractinian origins. Palaeontology, 40:114.Google Scholar
Ezaki, Y. 1997b. Variations in the disappearance patterns of rugosan corals in Tethys and their implications for environments at the end of the Permian, p. 126133. In Dickins, J. M., Yang, Z., Yin, H., Lucas, S. G., and Acharyya, S. K. (eds.), Late Palaeozoic and Early Mesozoic Circum-Pacific Events. Cambridge University Press, Cambridge.Google Scholar
Ezaki, Y. 1998. Paleozoic Scleractinia: progenitor or extinct experiments? Paleobiology, 24:227234.Google Scholar
Ezaki, Y. 1999. The Permian rugosan Huayunophyllum: its phylogenetic relationship and implications for extinction patterns of Rugosa, p. 6371. In Yao, A., Ezaki, Y., Hao, W., and Wang, S. (eds.), Biotic and Geological Development of the Paleo-Tethys in China. Peking University Press, Beijing.Google Scholar
Ezaki, Y. 2000. Palaeoecological and phylogentic implications of a new scleractinian genus from Permian sponge reefs, South China. Palaeontology, 43:199217.Google Scholar
Ezaki, Y. and Yasuhara, Y.in press. Regular and flexible modes of division and hystero-ontogenetic growth in the Silurian rugose coral Stauria favosa. Palaeontology.Google Scholar
Flügel, H. W. 1976. Numidiaphyllidae — eine neue Familie der Rugosa aus dem Ober-Perm von Süd-Tunis. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 9:5464.Google Scholar
Fois, E., and Gaetani, M. 1984. The recovery of reef-building communities and the role of cnidarians in carbonate sequences of the Middle Triassic (Anisian) in the Italian Dolomites. Palaeontographica Americana, no. 54:191200.Google Scholar
Hallam, A., and Wignall, P. B. 1997. Mass Extinctions and Their Aftermath. Oxford University Press, Oxford, 320 p.Google Scholar
Harrison, P. L., and Wallace, C. C. 1990. Reproduction, dispersal, and recruitment of scleractinian corals, p. 133207. In Dubinsky, Z. (ed.), Ecosystems of the World: Coral Reefs. Elsevier, Amsterdam.Google Scholar
Hill, D. 1981. Rugosa and Tabulata, p. F1F762. In Teichert, C. (ed.), Treatise on Invertebrate Paleontology, Pt. F, Rugosa and Tabulata. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Kennedy, W. J. 1977. Ammonite evolution, p. 251304. In Hallam, A. (ed.), Pattern of Evolution. Elsevier, Amsterdam.Google Scholar
Khoa, N. D. 1977. Carboniferous Rugosa and Heterocorallia from boreholes in the Lublin region (Poland). Acta Palaeontologica Polonica, 22:301404.Google Scholar
Melnikova, G. K., and Roniewicz, E. 1976. Contribution to the systematics and phylogeny of Amphiastraeina (Scleractinia). Acta Palaeontologica Polonica, 21:97114.Google Scholar
Morycowa, E., and Roniewicz, E. 1990. Revison of the genus Cladophyllia and description of Apocladophyllia gen. n. (Cladophylliidae fam. n., Scleractinia). Acta Palaeontologica Polonica, 35:165190.Google Scholar
Newell, N. D., Rigby, J. K., Driggs, A., Boyd, D. W., and Stehli, F. G. 1976. Permian reef complex, Tunisia. Brigham Young University Geology Studies, 23:75112.Google Scholar
Oliver, W. A. Jr. 1976. Noncystimorph colonial rugose corals of the Onesquethaw and Lower Cazenovia Stages (Lower and Middle Devonian) in New York and adjacent areas. Geological Survey Professional Paper, 869:1156.Google Scholar
Oliver, W. A. Jr. 1980. The relationship of the scleractinian corals to the rugose corals. Paleobiology, 6:146160.Google Scholar
Oliver, W. A. Jr. 1996. Origins and relationships of Paleozoic coral groups and the origin of the Scleractinia, p. 107134. In Stanley, G. D. Jr. (ed.), Paleobiology and Biology of Corals. Paleontological Society Paper 1, Pittsburgh, Pennsylvania.Google Scholar
Qi, W. T. 1984. An Anisian coral fauna in Guizhou, South China. Palaeontographica Americana, no. 54:187190.Google Scholar
Qi, W. T., and Stanley, G. D. Jr. 1989. New Anisian corals from Qingyan, Guiyang, South China, p. 1118. In Lithospheric Geoscience. Beijing University Press, Beijing. (In Chinese with English abstract)Google Scholar
Riedel, P. 1991. Korallen in der Trias der Tethys: Stratigraphische Reichweiten, Diversitätsmuster, Entwicklungstrends und Bedeutung als Rifforganismen. Mitteilungen der Gesellschaft der Geologie- und Bergbaustudenten in Österreich, 37:97118.Google Scholar
Romano, S. L., and Cairns, S. D. 2000. Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bulletin of Marine Science, 67:10431068.Google Scholar
Romano, S. L., and Palumbi, S. R. 1996. Evolution of scleractinian corals inferred from molecular systematics. Science, 271:640642.Google Scholar
Roniewicz, E. 1974. Rhaetian corals of the Tatra Mts. Acta Palaeontologica Polonica, 24:97116.Google Scholar
Roniewicz, E. 1989. Triassic scleractinian corals of the Zlambach Beds, northern Calcareous Alps, Austria. Österreichische Akademie der Wissenschaften, Wien, 126:1152.Google Scholar
Roniewicz, E. 1991. Correction of homonymy of generic name Cyclophyllia Roniewicz, 1989 (Scleractinia) into Cycliphyllia nom. n. Acta Palaeontologica Polonica, 36:239.Google Scholar
Roniewicz, E., and Morycowa, E. 1993. Evolution of the Scleractinia in the light of microstructural data. Courier Forschungsinstitut Senckenberg, 164:233240.Google Scholar
Roniewicz, E., and Stolarski, J. 1999. Evolutionary trends in the epithecate scleractinian corals. Acta Palaeontologica Polonica, 44:131166.Google Scholar
Roniewicz, E., and Stolarski, J. 2001. Triassic roots of the Amphiastraeid scleractinian corals. Journal of Paleontology, 75:3445.Google Scholar
Sandberg, P. A. 1983. An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy. Nature, 305:1922.Google Scholar
Scrutton, C. T. 1997. The Palaeozoic corals, I: origins and relationships. Proceedings of the Yorkshire Geological Society, 51:177208.Google Scholar
Scrutton, C. T. 1998. The Palaeozoic corals, II: structure, variation and palaeoecology. Proceedings of the Yorkshire Geological Society, 52:157.Google Scholar
Senowbari-Daryan, B., and Rigby, J. K. 1988. Upper Permian segmented sponges from Djebel Tebaga, Tunisia. Facies, 9:171250.Google Scholar
Stanley, G. D. Jr. 1988. The history of Early Mesozoic reef communities: a three-step process. Palaios, 3:170183.Google Scholar
Stanley, G. D. Jr., and Beauvais, L. 1994. Corals from an Early Jurassic coral reef in British Columbia: refuge on an oceanic island reef. Lethaia, 27:3547.Google Scholar
Stanley, G. D. Jr., and Fautin, D. G. 2001. The origin of modern corals. Science, 291:19131914.Google Scholar
Stanley, G. D. Jr., and Swart, P. K. 1995. Evolution of the coral-zooxanthellae symbiosis during the Triassic: a geochemical approach. Paleobiology, 21:179199.Google Scholar
Stanley, S. M., and Hardie, L. A. 1999. Hypercalcification: paleontology links plate tectonics and geochemistry to sedimentology. GSA Today, 9:17.Google Scholar
Taylor, P. D., and Larwood, G. P. 1988. Mass extinctions and the pattern of bryozoan evolution, p. 99119. In Larwood, G. P. (ed.), Extinction and Survival in the Fossil Record. The Systematic Association Special Volume, 34. Clarendon Press, Oxford.Google Scholar
Turnšek, D. 1997. Mesozoic Corals of Slovenia. Znanstvenoraziskovalni center SAZU. Zalozba ZRC, Ljubljana, 512 p.Google Scholar
Turnšek, D., and Ramovs, A. 1987. Upper Triassic (Norian-Rhaetian) reef buildups in the northern Julian Alps (NW Yugoslavia). Razprave IV. Razreda SAZU, 28:2767.Google Scholar
Veron, J. E. N. 2000. Corals of the World, 1. Australian Institute of Marine Science, Townsville, 463 p.Google Scholar
Veron, J. E. N., Odorico, D. M., Chen, C. A., and Miller, D. J. 1996. Reassessing evolutionary relationships of scleractinian corals. Coral Reefs, 15:19.Google Scholar
Webb, G. E. 1990. Lower Carboniferous coral fauna of the Rockhampton Group, east-central Queensland. Memoir of the Association of Australasian Palaeontologists, 10:1167.Google Scholar
Webby, B. D. 1972. The rugose coral Palaeophyllum Billings from the Ordovician of central New South Wales. Proceedings of the Linnean Society of New South Wales, 97:150157.Google Scholar
Wells, J. W. 1956. Scleractinia, p. F328F444. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. F, Coelenterata. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Wendt, J. 1990a. The first aragonitic rugose coral. Journal of Paleontology, 64:335340.Google Scholar
Wendt, J. 1990b. Corals and coralline sponges, p. 4566. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, 1. Van Nostrand Reinhold, New York.Google Scholar
Wignall, P. B., and Benton, M. J. 1999. Lazarus taxa and fossil abundance at times of biotic crisis. Journal of the Geological Society, London, 156:453456.Google Scholar
Wood, R. 1995. The changing biology of reef-building. Palaios, 10:517529.Google Scholar
Wood, R. 1999. Reef Evolution. Oxford University Press, Oxford, 414 p.Google Scholar
Young, G. A. 1999. Fossil colonial corals: colony type and growth, p. 647666. In Savazzi, E. (ed.), Functional Morphology of the Invertebrate Skeleton. John Wiley and Sons, Chichester.Google Scholar