Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T04:57:23.722Z Has data issue: false hasContentIssue false

Bryozoan astogeny and evolutionary novelties: their role in the origin and systematics of the Ordovician monticuliporid trepostome genus Peronopora

Published online by Cambridge University Press:  19 May 2016

David R. Hickey*
Affiliation:
Department of Geological Sciences, Michigan State University, East Lansing 48824

Abstract

Modifications of primitive astogenetic patterns were central to the origin of bifoliate Peronopora. Outgroup comparison with Prasopora indicates that fundamental events in the former's origin included vertical growth of basal lamina skeleton to form the median lamina and heterochronic modifications of early and later-stage astogeny. Heterochronic modifications of early astogeny included acceleration of budding rates in the ancestrular disc, disc enlargement, and reduction of the basal expansion. Later-stage heterochronic modifications included reduction of zooecial length and width of “endozonal” growth and parallel orientation of cystiphragms about maculae. Also important were “2-D” budding in longitudinal ranges and a unique mode of secondary frond formation. Paedomorphosis resulted in constraints on zoarial form, autozooecial morphology, cystiphragm patterning, and increased colonial integration. Coordination of early and later-stage astogenetic events suggests developmental integration linked to median lamina formation. Heterochronic modifications are inferred to have been products of spatial competition in early astogeny and competitive avoidance and resource exploitation in later astogeny. Restricted biogeographic distribution and characteristics of the ancestrula suggest that the larvae of bifoliate Peronopora were nonplanktotrophic.

A shared derived suite of characters including the median lamina unite the bifoliate Peronopora clade. Results of cladistic analyses indicate that bifoliate Peronopora comprise a cohesive, statistically significant clade. Character analysis, phylogenetic results, and the restricted biogeographic distribution of bifoliate species support the hypothesis of a monophyletic bifoliate Peronopora clade of generic rank. The generic concept of Peronopora is revised and limited to bifoliate species.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberch, P., and Alberch, J. 1981. Heterochronic mechanisms of morphological diversification and evolutionary change in the neotropical salamander Bolitoglossa occidentalis (Amphibia: Plethodontidae). Journal of Morphology, 17:249264.CrossRefGoogle Scholar
Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. 1979. Size and shape in ontogeny and phylogeny. Paleobiology, 5:296317.CrossRefGoogle Scholar
Anstey, R. L. 1981. Zooid orientation structures and water flow patterns in Paleozoic bryozoan colonies. Lethaia, 14:287302.Google Scholar
Anstey, R. L. 1986. Bryozoan provinces and patterns of generic evolution and extinction in the Late Ordovician of North America. Lethaia, 19:3351.CrossRefGoogle Scholar
Anstey, R. L. 1987a. Astogeny and phylogeny: heterochrony and morphological evolution in Paleozoic bryozoans. Paleobiology, 13:2043.Google Scholar
Anstey, R. L. 1987b. Colony patterning and functional morphology of water flow in Paleozoic stenolaemate Bryozoa, p. 18. In Ross, J. R. P. (ed.), Bryozoa: Past and Present. Western Washington University, Bellingham, 333 p.Google Scholar
Anstey, R. L., and Perry, T. G. 1969. Redescription of cotypes of Peronopora vera Ulrich, a Cincinnatian (Late Ordovician) ectoproct species. Journal of Paleontology, 43:245251.Google Scholar
Anstey, R. L., Rabbio, S. F., and Tuckey, M. E. 1987. Bryozoan bathymetric gradients within a Late Ordovician epeiric sea. Paleoceanography, 2:165176.CrossRefGoogle Scholar
Astrova, G. G. 1978. The History of Development, System and Phylogeny of the Bryozoa. Order Trepostomata. Akademiya Nauk S.S.R., Paleontologicheskiy Institut Trudy 169, 240 p.Google Scholar
Bassler, R. S. 1911. The early Paleozoic Bryozoa of the Baltic provinces. United States National Museum Bulletin, 77(21), 382 p.Google Scholar
Bassler, R. S. 1953. Bryozoa, p. G1G252. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. G, Bryozoa. Geological Society of America and University of Kansas Press, Lawrence, 253 p.Google Scholar
Blake, D. B. 1980. Homeomorphy in Paleozoic bryozoans: a search for explanations. Paleobiology, 6:451465.Google Scholar
Blake, D. B., and Snyder, E. M. 1987. Phenetic and cladistic analyses of the Rhabdomesina (Bryozoa) and similar taxa, p. 3340. In Ross, J. R. P. (ed.), Bryozoa: Present and Past. Western Washington University, Bellingham, 333 p.Google Scholar
Boardman, R. S., Cheetham, A. H., and Cook, P. L. 1970. Intracolony variation and the genus concept in Bryozoa, p. 294320. In Yochelson, E. L. (ed.), Proceedings of the North American Paleontological Convention, Vol. 1. Allen Press, Inc., Lawrence, Kansas, 703 p.Google Scholar
Boardman, R. S., and McKinney, F. K. 1976. Skeletal architecture and preserved organs of four-sided zooids in convergent genera of Paleozoic Trepostomata (Bryozoa). Journal of Paleontology, 50:2578.Google Scholar
Boardman, R. S., and Utgaard, J. 1966. A revision of the Ordovician bryozoan genera Monticulipora, Peronopora, Heterotrypa, and Dekayia. Journal of Paleontology, 40:10821108.Google Scholar
Bolton, T. E. 1986. Eary Silurian Bryozoa from the Clemville Formation of the Port Daniel region, Gaspésie Peninsula, Quebec. Current Research, Pt. B, Geological Survey of Canada, Paper 86-1B:97106.Google Scholar
Bonner, J. T., and Horn, H. S. 1982. Selection for size, shape and developmental timing, p. 259278. In Bonner, J. T. (ed.), Evolution and Development. Dahlem Konferenzen 1982. Springer-Verlag, New York, 356 p.CrossRefGoogle Scholar
Brown, G. D., and Daly, E. J. 1985. Trepostome Bryozoa from the Dillsboro Formation (Cincinnatian) in southeastern Indiana. Indiana Department of Natural Resources, Geological Survey Special Report 33, 95 p.Google Scholar
Buss, L. W. 1986. The uniqueness of the individual revisited, p. 467506. In Jackson, J. B. C. et al. (eds.), Population Biology and Evolution of Clonal Organisms. Yale University Press, New Haven, 530 p.Google Scholar
Clark, G. R. II, and West, R. R. 1981. Jekyll-Hyde aspects of evolution: environmental dimorphism as a source of punctuations. Geological Society of America Abstracts with Programs, 13(7):427.Google Scholar
Corneliussen, E. F., and Perry, T. G. 1973. Monotrypa, Hallopora, Amplexopora, and Hennigopora (Ectoprocta) from the Brownsport Formation (Niagaran), western Tennessee. Journal of Paleontology, 47:151220.Google Scholar
Cumings, E. R. 1904. Development of some Paleozoic Bryozoa. American Journal of Science, 17:4978.Google Scholar
Cumings, E. R. 1908. The stratigraphy and paleontology of the Cincinnatian Series of Indiana. Department of Geology and Natural Resources of Indiana, Annual Report 32:6071189.Google Scholar
Cumings, E. R. 1912. Development and systematic position of the monticuliporids. Geological Society of America Bulletin, 23:357370.Google Scholar
Cumings, E. R., and Galloway, J. J. 1913. The stratigraphy and paleontology of the Tanner's Creek sections of the Cincinnatian Series of Indiana. Indiana Department of Geology and Natural Resources, Annual Report 37:353479.Google Scholar
Dzik, J. 1981. Evolutionary relationships of the early Paleozoic ‘cyclostomatous’ Bryozoa. Palaeontology, 24:827861.Google Scholar
Eldredge, N., and Novacek, M. J. 1985. Systematics and paleobiology. Paleobiology, 11:6574.CrossRefGoogle Scholar
Emlet, R. B. 1985. Crystal axes in Recent and fossil adult echinoids indicate trophic mode in larval development. Science, 230:937939.Google Scholar
Ettensohn, F. R., et al. 1986. Paleoecology and paleoenvironents of the bryozoan-rich Sulpher Well Member, Lexington Limestone (Middle Ordovician), Central Kentucky. Southeastern Geology, 26:199218.Google Scholar
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39:783791.Google Scholar
Hanson, T. A. 1980. Influence of larval dispersal and geographic distribution on species longevity in neogastropods. Paleobiology, 6:193207.Google Scholar
Hickey, D. R. 1987. Skeletal structure, development and elemental composition of the Ordovician trepostome bryozoan Peronopora. Palaeontology, 39, in press.Google Scholar
Hu, Z. 1986. Late Ordovician bryozoans from Yushan County, Jiangxi Province. Acta Micropaleontologica Sinica, 3:167183. (In Chinese with English summary.)Google Scholar
Jablonski, D., Flessa, K. W., and Valentine, J. W. 1985. Biogeography and paleobiology. Paleobiology, 11:7590.Google Scholar
Jablonski, D., and Lutz, R. A. 1983. Larval ecology of marine benthic invertebrates: paleobiological implications. Biological Review, 58:2189.Google Scholar
Jackson, J. B. C. 1979. Morphological strategies of sessile animals, p. 499555. In Larwood, G. P. and Rosen, B. R. (eds.), Biology and Systematics of Colonial Organisms. Academic Press, New York.Google Scholar
Karklins, O. L. 1983a. Introduction to the suborder Ptilodictyina, p. 453488. In Robison, R. A. (ed.), Treatise on Invertebrate Paleontology, Pt. G, Bryozoa, Revised. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Karklins, O. L. 1983b. Systematic descriptions for the suborder Ptilodictyina, p. 489529. In Robison, R. A. (ed.), Treatise on Invertebrate Paleontology, Pt. GI, Bryozoa, Revised. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Karklins, O. L. 1984. Trepostome and cystoporate bryozoans from the Lexington Limestone and the Clays Ferry Formation (Middle and Upper Ordovician) of Kentucky. U.S. Geological Survey Professional Paper 1066-I, 105 p.Google Scholar
Loeblich, A. R. 1942. Bryozoa from the Ordovician Bromide Formation, Oklahoma. Journal of Paleontology, 16:413436.Google Scholar
Männil, R. 1961. On the morphology of the hemisphaeric zoaria of Trepostomata (Bryozoa). Eesti NSV Teaduste Akadeemia Geoloogia Instituudi Uurimused, 6, p. 113140. (In Russian, with English summary.)Google Scholar
Marx, J. L. 1984. Instability in plants and the ghost of Lamarck. Science, 224:14151416.CrossRefGoogle ScholarPubMed
Mayr, E. 1984. Biological classification: toward a synthesis of opposing methodologies, p. 646662. In Sober, E. (ed.), Conceptual Issues in Evolutionary Biology. Massachusetts Institute of Technology Press, Cambridge, 725 p.Google Scholar
Meyer, D. L., et al. 1981. Stratigraphy, sedimentology, and paleoecology of the Cincinnatian Series (Upper Ordovician) in the vicinity of Cincinnati, Ohio, p. 3171. In Roberts, T. G. (ed.), Geological Society of America Cincinnati '81 Field Trip Guidebooks, Vol. 1: Stratigraphy, Sedimentology. American Geological Institute, Washington, D.C.Google Scholar
McKinney, F. K. 1971. Trepostomatous Ectoprocta (Bryozoa) from the lower Chickamauga Group (Middle Ordovician), Wills Valley, Alabama. Bulletins of American Paelontology, 60:193337.Google Scholar
McKinney, F. K. 1977. Functional interpretation of lyre-shaped Bryozoa. Paleobiology, 3:9097.Google Scholar
McKinney, F. K. 1978. Astogeny of the lyre-shaped Carboniferous fenestrate bryozoan Lyroporella. Journal of Paleontology, 52:8390.Google Scholar
McKinney, F. K. 1981. Intercolony fusion suggests polyembryony in Paleozoic fenestrate bryozoans. Paleobiology, 7:247251.Google Scholar
McKinney, F. K. 1983. Asexual colony multiplication by fragmentation: an important mode of genet longevity in the Carboniferous bryozoan Archimedes. Paleobiology, 9:3543.Google Scholar
McKinney, F. K. 1986. Historical record of erect bryozoan growth forms. Proceedings of the Royal Society of London, B 228:133149.Google Scholar
McKinney, F. K., and King, B. F. 1984. Early growth stages of some Paleozoic phylloporinid bryozoans. Journal of Paleontology, 58:852866.Google Scholar
Nicholson, H. A. 1881. On the structure and affinities of the genus Monticulipora and its subgenera. William Blackwood and Sons, Edinburgh, 235 p.Google Scholar
Patzkowsky, M. E. 1987. Inferred water flow patterns in the fossil Fistulipora M'coy, p. 213220. In Ross, J. R. P. (ed.), Bryozoa: Present and Past. Western Washington University, Bellingham, 333 p.Google Scholar
Podell, M. E., and Anstey, R. L. 1979. The interrelationship of early colony development, monticules and branches in Paleozoic bryozoans. Palaeontology, 22:965982.Google Scholar
Rachootin, S. P., and Thomson, K. S. 1981. Epigenetics, paleontology, and evolution, p. 181193. In Scudder, G. G. E. and Reveal, J. L. (eds.), Evolution Today. Proceedings of the Second International Congress of Systematics and Evolutionary Biology.Google Scholar
Rominger, C. 1886. Observations on Chaetetes and some related genera, in regard to their systematic position. Proceedings of the National Academy of Science, Phiadelphia, p. 113123.Google Scholar
Ryland, J. S. 1977. Taxes and tropisms in bryozoans, p. 411436. In Woollacott, R. M. and Zimmer, R. L. (eds.), Biology of Bryozoans. Academic Press, New York, 566 p.Google Scholar
Silander, J. A. 1986. Microevolution in clonal plants, p. 107152. In Jackson, J. B. C. et al. (eds.), Population Biology and Evolution of Clonal Organisms. Yale University Press, New Haven, 530 p.Google Scholar
Singh, R. J. 1979. Trepostomatous bryozoan fauna from the Bellevue Limestone, Upper Ordovician, in the tri-state area of Ohio, Indiana, and Kentucky. Bulletins of American Paleontology, 76:159288.Google Scholar
Smith-Gill, S. J. 1983. Developmental plasticity: developmental conversion vs. phenotypic modulation. American Zoologist, 23:4755.Google Scholar
Swofford, D. L. 1984. PAUP: Phylogenetic Analysis Using Parsimony, version 2.2. Illinois Natural History Survey, Champaign, 40 p.Google Scholar
Tavener-Smith, R. 1975. The phylogenetic affinities of fenestelloid bryozoans. Palaeontology, 18:117.Google Scholar
Taylor, P. D. 1987. Skeletal morphology of malacostegan grade cheilostome Bryozoa, p. 269276. In Ross, J. R. P. (ed.), Bryozoa: Present and Past. Western Washington University, Bellingham, 333 p.Google Scholar
Ulrich, E. O. 1882. American Paleozoic Bryozoa. Journal of the Cincinnati Society of Natural History, 5(1):121175.Google Scholar
Ulrich, E. O. 1886. Report on the Lower Silurian Bryozoa with preliminary descriptions of some of the new species. Minnesota Geological and Natural History Survey, Annual Report, 14:57103.Google Scholar
Ulrich, E. O. 1890. Paleozoic Bryozoa. Geological Survey of Illinois, 8:285688.Google Scholar
Utgaard, J. 1983a. Paleobiology and taxonomy of the order Cystoporata, p. 327357. In Robison, R. A. (ed.), Treatise on Invertebrate Paleontology, Pt. G, Bryozoa, Revised. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Utgaard, J. 1983b. Systematic descriptions for the order Cystoporata, p. 358439. In Robison, R. A. (ed.), Treatise on Invertebrate Paleontology, Pt. G, Bryozoa, Revised. Geological Society of America and University of Kansas, Lawrence.Google Scholar
Utgaard, J., and Boardman, R. S. 1965. Heterotrypa Nicholson, 1879, and Peronopora Nicholson, 1881 (Bryozoa, Trepostomata): proposed designation of a type-species in conformity with generally accepted usage. Bulletin of Zoological Nomenclature, 22:112118.Google Scholar
Utgaard, J., and Perry, T. G. 1964. Trepostomatous bryozoan fauna of the upper part of the Whitewater Formation (Cincinnatian) of eastern Indiana and western Ohio. Indiana Department of Conservation, Geological Survey Bulletin 33, 111 p.Google Scholar
Waagen, M., and Wentzel, J. 1886. Salt Range fossils. Geological Survey of India Memoirs, Paleontologica Indica, Series 13, 1:835924.Google Scholar
Zimmer, R. L., and Woollacott, R. M. 1977. Metamorphosis, ancestrulae, and coloniality in bryozoan life cycles, p. 91142. In Woollacott, R. M. and Zimmer, R. L. (eds.), Biology of Bryozoans. Academic Press, New York, 566 p.Google Scholar