Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T10:55:20.710Z Has data issue: false hasContentIssue false

A complete reconstruction of the hyolithid skeleton

Published online by Cambridge University Press:  14 July 2015

Mónica Martí Mus
Affiliation:
Área de Paleontología, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz 06006 Spain,
Lennart Jeppsson
Affiliation:
Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden,
John M. Malinky
Affiliation:
Physical Science Department, San Diego City College, 1313 Park Boulevard, San Diego, CA 92101, USA,

Abstract

Hyolithids are a group of Paleozoic lophotrochozoans with a four-pieced skeleton consisting of a conch, an operculum, and a pair of lateral ‘spines' named helens. Both the conch and operculum are relatively well known and, to a certain extent, have modern analogues in other lophotrochozoan groups. The helens, on the other hand, are less well known and do not have clear modern analogues. This has hindered the knowledge of the complete morphology of the hyolithid skeleton, as well as other aspects of hyolithid biology, such as the organization of soft parts, and their ability to move. The material studied herein, consisting of disarticulated skeletal elements from the Silurian of Gotland, Sweden, illustrates a complete developmental sequence of a hyolithid species and includes the first complete, three-dimensionally preserved helens. Our material confirms that helens were massive skeletal elements, whose growth started proximally with the deposition of a central, coherent lamella. Further shell accretion took place around this lamella, but followed a particular accretion pattern probably constrained by the presence of marginal muscle attachment sites on the proximal-most portion of the helens. These muscle attachment sites were ideally located to allow a wide range of movements for the helens, suggesting that hyolithids may have been relatively mobile organisms.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrande, J. 1847. Pugiunculus, ein fossiles Pteropoden-Geschlecht. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde, 1847:554558.Google Scholar
Barrande, J. 1867. Systême Silurien de centre de la Bohême, vol. 3, Classe des Mollusques, Ordre des Ptéropodes. Published by the author, Prague and Paris.Google Scholar
Bengtson, S. 1990. Hyoliths, p. 211232. In Bengtson, S., Conway Morris, S., Cooper, B. J., Jell, P. A. and Runnegar, B. N. (eds.), Early Cambrian fossils from South Australia. Association of Australasian Palaeontologists Memoirs 9. Google Scholar
Berg-madsen, V. and Malinky, J. M. 1999. A revision of Holm's late Mid and Late Cambrian hyoliths of Sweden. Palaeontology, 42:841885.Google Scholar
Butterfield, N. J. and Nicholas, C. J. 1996. Burgess Shale-type preservation of both non-mineralizing and ‘shelly' Cambrian organisms from the Mackenzie Mountains, northwestern Canada. Journal of Paleontology, 70:893899.Google Scholar
Dzik, J. 1978. Larval development of hyolithids. Lethaia, 11:293299.CrossRefGoogle Scholar
Galle, A. and Parsley, R. L. 2005. Epibiont relationships on hyolithids demonstrated by Ordovician trepostomes (Bryozoa) and Devonian tabulates (Anthozoa). Bulletin of Geosciences, 80:125138.Google Scholar
Holm, G. 1893. Sveriges kambrisk-siluriska Hyolithidae och Conulariidae. Sveriges Geologiska Undersökning, Afhandlingar och Uppsatser, C112:1172.Google Scholar
Jeppsson, L. 2005. Conodont-based revisions of the late Ludfordian on Gotland, Sweden. GFF, 127:273282.Google Scholar
Jeppsson, L., Anehus, R., and Fredholm, D. 1999. The optimal acetate buffered acetic acid technique for extracting phosphatic fossils. Journal of Paleontology, 73:964972.Google Scholar
Jeppsson, L., Eriksson, M. E., and Calner, M. 2006. A latest Llandovery to latest Ludlow high-resolution biostratigraphy based on the Silurian of Gotland—a summary. GFF, 128:109114.Google Scholar
Malinky, J. M. 2002. A revision of Early to Mid Ordovician hyoliths from Sweden. Palaeontology, 45:511555.Google Scholar
Malinky, J. M. 2006. Revision of Hyolitha from the Ordovician of Estonia. Paläontologische Zeitschrift, 80:88106.Google Scholar
Malinky, J. M. and Berg-Madsen, V. 1999. A revision of Holm's Early and early Mid Cambrian hyoliths of Sweden. Palaeontology, 42:2565.Google Scholar
Malinky, J. M., Eriksson, M. E. and Ahlberg, P. 2009. ‘Mediterranean Province' hyoliths from the middle Cambrian and Upper Ordovician of Sweden. GFF, 131:281291.Google Scholar
Marek, L. 1963. New knowledge on the morphology of Hyolithes . Sborník Geologických Věd, Paleontologie, 1:5373.Google Scholar
Marek, L. 1967. The class Hyolitha in the Caradoc of Bohemia. Sborník Geologických Věd, Paleontologie, 9:51113.Google Scholar
Marek, L. 1975. Two new genera of Pauxillitidae Marek, 1967 (Hyolitha). Věstník Ústředního ústavu geologického, 50:237240.Google Scholar
Marek, L. 1976. On the ontogeny in Hyolithida. Časopis pro Mineralogii a Geologii, 21:277283.Google Scholar
Marek, L. and Yochelson, E. L. 1964 . Paleozoic mollusk: Hyolithes . Science, 146:16741675.Google Scholar
Marek, L. and Galle, A. 1976. The tabulate coral Hyostragulum, an epizoan with bearing on hyolithid ecology and systematics. Lethaia, 9:5164.Google Scholar
Marek, L., Parsley, R. L., and Galle, A. 1997. Functional morphology of hyoliths based on flume studies. Věstník Českého geologického ústavu, 72:351358.Google Scholar
Martí Mus, M. and Bergström, J. 2005. The morphology of hyolithids and its functional implications. Palaeontology, 48:11391167.Google Scholar
Martí Mus, M. and Bergström, J. 2007. Skeletal microstructure of helens, lateral spines of hyolithids. Palaeontology, 50:12311243.Google Scholar
Moberg, J. C. and Grönwall, K. A. 1909. Om Fyledalens Gotlandium. Lunds Universitets Årsskrift, Afdelning 2, 5 (Ny följd), No. 1, 86 p.Google Scholar
Runnegar, B., Pojeta, J., Morris, N. J., Taylor, J. D., Taylor, M. E., and McClung, G. 1975. Biology of the Hyolitha. Lethaia, 8:181191.Google Scholar
Sysoev, V.A. 1958. Nadotryad Hyolithoidea, p. 184190. In Yu. Orlov, A., Luppova, N. P. and Drushchits, V. V. (eds.), Osnovy paleontologii. Molluski-golovongie 2. Ammonoidei (tseratity, ammonity), vnutrirakovinnye. Prilozhenie–konokonkhii. Akademiya Nauk SSSR. Google Scholar
Sysoev, V. A. 1976. Terminologiya i metodika issledovaniya khiolitov. Paleontologichesy zhurnal, 1976 (4):6176.Google Scholar
Yochelson, E. L. 1961. The operculum and mode of life of Hyolithes . Journal of Paleontology, 35:152161.Google Scholar
Yochelson, E. L. 1974. Redescription of the Early Cambrian Helenia bella Walcott, an appendage of Hyolithes . Journal of Research of the United States Geological Survey, 2:717722.Google Scholar