Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T17:14:32.417Z Has data issue: false hasContentIssue false

Earliest Triassic origin of Isoetes and quillwort evolutionary radiation

Published online by Cambridge University Press:  14 July 2015

Gregory J. Retallack*
Affiliation:
Department of Geological Sciences, University of Oregon, Eugene 97403

Abstract

Isoetes beestonii new species is the most ancient known species of this living genus. In earliest Triassic shales of the Sydney and Bowen Basins of Australia it is locally abundant as circlets of transversely wrinkled leaves. It was heterosporous with megaspores of Maiturisporites rewanensis and microspores of Lundbladispora sp. cf. L. springsurensis.

Isoetes thus predates Pleuromeia from which it has been thought to have evolved. Australian Pleuromeia-like subarborescent lycopsids are here reviewed as whole plants, with names based on fertile structures, and include Cylostrobus sydneyensis Helby and Martin from the Sydney Basin, Pleuromeia dubia (Seward) Retallack from the Sydney and Canning Basins, and Cylostrobus indicus (Lele) new combination and Pleuromeia sternbergii (Münster) Corda for Germar, newly recorded from the Canning Basin.

There are in addition an array of cormose lycopsids that formed compact conelike plants when fertile, intermediate in stature between Isoetes and Pleuromeia. One of these is Tomiostrobus australis (Ash) Sadovnikov, formerly regarded as a cone, but here reinterpreted as a small pioneering plant of oligotrophic lakes and ponds, like Isoetes. Its megaspores are Horstisporites and its microspores are the stratigraphically important Aratrisporites tenuispinosus. Other similar forms are Tomiostrobus polaris (Lundblad) new combination from the early Triassic of Greenland, T. mirabilis (Snigirevskaya) new combination from the early Triassic of the Tunguska Basin of Siberia, T. taimyrica (Sadovnikov) new combination from the Early Triassic of the Taimyr region of Siberia, Lepacyclotes ermayinensis (Wang) new combination from the middle Triassic of China, L. convexus (Brik) new combination from the middle-late Triassic of Kazachstan, and L. zeilleri (Fliche) new combination from the middle Triassic of France and Germany.

The diversity of isoetaleans in early Triassic floras and the weak vascular system of permineralized Tomiostrobus and Pleuromeia contradict the traditional view that Isoetes evolved by reduction in size from Pleuromeia and that its opportunistic life style allowed it to avoid plant competition. It is now more likely that Isoetaceae were weedy survivors of Permian-Triassic extinctions. The adaptive radiation and decline of Triassic quillworts matches the recovery from near-extinction, then decline of therapsid reptiles, for which these plants may have been an important food.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. H., and Anderson, H. M. 1985. Palaeoflora of southern Africa. Prodromus of South African megafloras Devonian to Lower Cretaceous. A. A. Balkema, Rotterdam, 423 p.Google Scholar
Ash, S. R. 1979. Skilliostrobus gen. nov., a new lycopsid cone from the Early Triassic of Australia. Alcheringa, 3:7389.CrossRefGoogle Scholar
Ash, S. R., and Pigg, K. B. 1991. A new Jurassic Isoetites (Isoetales) from the Wallowa Terrane in Hells Canyon, Oregon and Idaho. American Journal of Botany, 78:16361642.CrossRefGoogle Scholar
Balme, B. E. 1970. Palynology of Permian and Triassic strata in the Salt Range and Surghor Range, West Pakistan, p. 305453. In Kummel, B. and Teichert, C. (eds.), Stratigraphic Boundary Problems: Permian and Triassic of West Pakistan. Department of Geology, University of Kansas, Special Publication, 4.Google Scholar
Banerji, J. 1989. Some Mesozoic plant remains from the Bhuj Formation, with remarks on the depositional environment of beds. Palaeobotanist, 37:159168.Google Scholar
Banks, M. R., and Clarke, M. J. 1973. Tasmania: Parmeneer Supergroup, p. 2347. In Banks, M. R. (ed.), Field Trip no. 1. Upper Carboniferous to Triassic rocks in south-eastern Australia. Third International Gondwana Symposium, Canberra.Google Scholar
Bateman, R. M. 1994. Evolutionary-developmental change in the growth architecture of fossil rhizomorphic lycopsids: scenarios constructed on cladistic foundations. Biological Reviews, 69:527597.CrossRefGoogle Scholar
Batemen, R. M., DiMichele, W. A., and Willard, D. A. 1992. Experimental cladistic analyses of anatomically preserved arborescent lycopsids from the Carboniferous of Euramerica: an essay in paleobotanical phylogenetics. Annals of the Missouri Botanical Garden, 79:500559.CrossRefGoogle Scholar
Baud, A., Magaritz, M., and Holser, W. T. 1989. Permian-Triassic of the Tethys: carbon isotope studies. Geologische Rundschau, 71:649677.CrossRefGoogle Scholar
Beerbower, R. 1985. Early development of continental ecosystems, p. 4791. In Tiffhey, B. H. (ed.), Geologic Factors and the Evolution of Plants. Yale University Press, New Haven.Google Scholar
Birkelund, T., and Perch-Nielsen, K. 1976. Late Paleozoic-Mesozoic evolution of central East Greenland, p. 305339. In Escher, A. and Watt, W. S. (eds.), Geology of Greenland. Geological Survey of Greenland, Copenhagen.Google Scholar
Bock, W. B. 1962. A study on fossil Isoetes. Journal of Paleontology, 36:5359.Google Scholar
Bock, W. B. 1969. The American Triassic flora and global distribution. Geological Center Research Series 3-4, North Wales, Pennsylvania, 406 p.Google Scholar
Bose, M. N. 1974. Triassic floras, p. 285293. In Surange, K. R., Lakhanpal, R. N., and Baradwaj, D. C. (eds.), Aspects and Appraisal of Indian Paleobotany. Birbal Sahni Institute, Lucknow.Google Scholar
Brik, M. I. 1952. Iskopaemaya flora i stratigraphiya niznemezozoiskikh otlozhenii basseina srednego R. Ilek v zapadnom kazachstane (Fossil flora and stratigraphy of lower Mezozoic deposits of the central Ilek River in western Kazachstan). Trudy Geologiskhaya Instituta Nauchotekhniskoi Akademia Nauk S.S.S.R., 9:373. (In Russian)Google Scholar
Brown, R. W. 1958. New occurrences of the fossil quillworts called Isoetites. Washington Academy of Sciences Journal, 48:358361.Google Scholar
Brunnschweiler, R. O. 1954. Mesozoic stratigraphy and history of the Canning Desert and Fitzroy Valley, Western Australia. Geological Society of Australia Journal, 1:3554.CrossRefGoogle Scholar
Burges, N. A. 1935. Additions to our knowledge of the flora of the Narrabeen Stage of the Hawkesbury Series in New South Wales. Linnaean Society of N.S.W. Proceedings, 60:257264.Google Scholar
Carpenter, A. 1935. Études paléobotaniques sur le Groupe de la Sakoa et le Groupe de la Sakamena (Madagascar). Annales Geologiques, Service du Mines, Madagascar, 5:132.Google Scholar
Carruthers, W. 1869. On the plant remains from the Brazilian coal-beds, with remarks on the genus Flemingites. Geological Magazine, 6:151156.CrossRefGoogle Scholar
Chaloner, W. G. 1967. Lycophyta, p. 437802. In Boureau, E. (ed.), Traité de Paléobotanique. Masson, Paris.Google Scholar
Chaloner, W. G., and Turner, S. 1987. An enigmatic Triassic lycopod axis from Australia. Review of Paleobotany and Palynology, 57:5158.CrossRefGoogle Scholar
Claoué-Long, J. C., Zhang, Z.-C., Ma, G-G., and Du, S.-H. 1991. The age of the Permo-Triassic boundary. Earth and Planetary Science Letters, 105:182190.CrossRefGoogle Scholar
Cornet, B., and Olsen, P. E. 1990. Early to Middle Carnian (Triassic) flora and fauna of the Richmond and Taylorsville Basins, Virginia and Maryland, U.S.A. Guidebook of the Virginia Museum of Natural History, 1, 83 p.Google Scholar
Croft, J. R. 1980. Taxonomic revision of Isoetes (Isoetaceae) in Papuasia. Blumea, 20:177190.Google Scholar
Crompton, A. W., and Hotton, N. 1967. Functional morphology of the masticatory apparatus of two dicynodonts (Reptilia, Therapsida). Postilla, 109, 51 p.Google Scholar
Daugherty, L. H. 1941. The Upper Triassic flora of Arizona. Carnegie Institution of Washington Publications, 526, 108 p.Google Scholar
de Jersey, N. J. 1979. Palynology of the Permian-Triassic transition in the western Bowen Basin. Geological Survey of Queensland Publications, 374, Paleontological Paper, 46, 39 p.Google Scholar
Dettman, M. E. 1961. Lower Mesozoic megaspores from Tasmania and South Australia. Micropalaeontology, 7:7186.CrossRefGoogle Scholar
de Vol, C. E., 1972. Isoetes found in Taiwan. Taiwania, 17:17.Google Scholar
Dobruskina, I. A. 1974. Triassic lepidophytes. Paleontological Journal, 8:384396.Google Scholar
Dobruskina, I. A. 1982. Triasovie flori Eurazii (Triassic floras of Eurasia). Nauka, Moscow, 196 p. (In Russian)Google Scholar
Dobruskina, I. A. 1985. Some problems of the systematics of Triassic lepidophytes. Paleontological Journal, 19:7488.Google Scholar
Drinnan, A., and Chambers, C. 1986. Flora of the lower Cretaceous Koonwarra Fossil Bed (Korumburra Group), South Gippsland, Victoria, p. 2032. In Jell, P. A. (ed.), Plants and Invertebrates from the lower Cretaceous Koonwarra Fossil Bed, South Gippsland, Victoria. Association of Australian Palaeontologists Memoir, 3.Google Scholar
Eisenhut, E. A. 1966. Eine Pleuromeia sp., aus dem Schilfsandstein. Jahrhefte Vereins Vaterländische Naturkunde Württemberg, 121:145148.Google Scholar
Emmons, E. 1856. Geological report of the Midland Counties, North Carolina. Putnam, New York, 352 p.Google Scholar
Emmons, E. 1857. American Geology, containing a statement of the principles of the science with full illustrations of the characteristic American fossils, with an atlas and a geologic map of the United States, Part 6. Sprague, Albany, New York, 152 p.Google Scholar
Erwin, D. H. 1994. The Permo-Triassic extinction. Nature, 367:231236.CrossRefGoogle Scholar
Feistmantel, O. 1876. Jurassic (Oolitic) flora of Kach. Fossil flora of the Gondwana System. Geological Survey of India Memoirs, Palaeontologia Indica, Series 2, 2, 80 p.Google Scholar
Fliche, P. 1910a. Flore fossile du Trias en Lorraine et Franche-Comté. Bulletin Société des Sciences de Nancy, 11:222286.Google Scholar
Fliche, P. 1910b. Flore fossile du Trias en Lorraine et Franche-Comté. Berger-Levrault, Paris, 297 p.Google Scholar
Flügel, E. 1994. Pangean shelf carbonates: controls and paleoclimatic significance of Permian and Triassic reefs, p. 247266. In Klein, G. D. (ed.), Pangea: paleoclimate, tectonics and sedimentation during accretion, zenith and breakup of a supercontinent. Geological Society of America Special Paper, 288.Google Scholar
Fontaine, W. M. 1883. Contributions to the knowledge of the older Mesozoic flora of Virginia. U.S. Geological Survey Monograph, 6, 144 p.Google Scholar
Fontaine, W. M. 1900. Notes on fossil plants collected by Dr. Ebenezer Emmons from the older Mesozoic rocks of North Carolina. U.S. Geological Survey Annual Report, 20:277315.Google Scholar
Foord, A. H. 1890. Notes on the palaeontology of Western Australia. Geological Magazine, 3:97105.Google Scholar
Frenguelli, J. 1943. Contribuciones al concimiento de la flora del gonwana superior en la Argentina. XXVII. Lepidanthium sporiferum Feistm. sp.? Notas del Museo de La Plata, 9:531537.Google Scholar
Frenguelli, J. 1948. Estratigrafia y edad de Ilamado Retico en la Argentina. Gaea, Buenos Aires, 8:159309.Google Scholar
Fuchs, G., Grauvogel-Stamm, L., and Mader, D. 1991. Une remarquable flora à Pleuromeia et Anomopteris in situ du Bundsandstein Moyen (Trias inférieur) de l'Eifel (R.FD. Allemagne), morphologie, paléoécologie et paléogéographie. Palaeontographica, B222:89120.Google Scholar
Fuglewicz, R. 1973. Megaspores of Polish Buntsandstein and their stratigraphical significance. Acta Palaeontologia Polonica, 18:401453.Google Scholar
Germar, E. F. 1852. Sigillaria sternbergi Münster aus dem bunten Sandstein. Deutsche Geologische Gesellschaft Zeitschrift, 4:183189.Google Scholar
Gorter, J. D. 1978. Triassic environments in the Canning Basin, Western Australia. B.M.R. Journal of Geology and Geophysics, 3:2533.Google Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. Belknap Press, Cambridge, 501 p.Google Scholar
Grant-Mackie, J. A., Branagan, D. F., and Grenfell, H. R. 1985. A new mussel (Mytilidae, Bivalvia) from the Sydney Basin Triassic. New Zealand Geological Survey Records, 9:5355.Google Scholar
Grauvogel-Stamm, L. 1991. Bustia ludovicii n. g., n. sp., a new enigmatic reproductive organ from the Voltzia Sandstone (early Middle Triassic) of the Vosges (France): its bearing for lycopod origin. Neues Jahrbuch fur Paläontologie Abhandlungen, 83:329345.Google Scholar
Grauvogel-Stamm, L. 1993. Pleuromeia sternbergii (Münster) Corda from the Lower Triassic of Germany—further observations and comparative morphology of its rooting organs. Review of Palaeobotany and Palynology, 77:185212.CrossRefGoogle Scholar
Grauvogel-Stamm, L., and Duringer, P. 1982. Cylostrobophyllum giganteum n. gen. et n. sp., a new lycopsid reproductive organ from the Lettenkohle (unterer Keuper) of eastern France. Geologishe Vereeningen, 72:53.Google Scholar
Grauvogel-Stamm, L., and Duringer, P. 1983. Annalepis zeilleri Fliche 1910 emend., un organe reproducteur de lycophyte de la Lettenkohle de l'Est de la France; morphologie, spores in situ et paleoecologie. Geologishe Rundschau, 72:2351.CrossRefGoogle Scholar
Grime, J. P. 1979. Plant Strategies and Vegetation Processes. Wiley. New York, 222 pp.Google Scholar
Harris, T. M. 1935. The fossil flora of Scoresby Sound, East Greenland. Part 4. Ginkgoales, Coniferales, Lycopodiales and isolated fructifications. Meddelelser øm Grønland, 112, 176 p.Google Scholar
Helby, R., and Martin, A. R. H. 1965. Cylostrobus gen. nov., cones of lycopsidean plants from the Narrabeen Group (Triassic) of New South Wales. Australian Journal of Botany, 13:389404.CrossRefGoogle Scholar
Hemsley, A. R., and Scott, A. C. 1989. The ultrastructure of four Australian Triassic megaspores. Pollen et Spores, 31:133154.Google Scholar
Hickey, J. R. 1986. The early evolutionary and morphological diversity of Isoetes, with descriptions of two new Neotropical species. Systematic Botany, 11:309321.CrossRefGoogle Scholar
Hill, R. S. 1987. Tertiary Isoetes from Tasmania. Alcheringa, 12:157162.CrossRefGoogle Scholar
Holmes, W. B. K., and Ash, S. R. 1979. An early Triassic megafossil flora from the Lorne Basin, New South Wales. Proceedings of the Linnaean Society of N.S.W., 103:4770.Google Scholar
Huang, Z.-G., and Zhou, H.-Q. 1980. Fossil plants, p. 43114. In Mesozoic Stratigraphy and Palaeontology in Shaanxi, Gansu and Ningxia. Vol. 1. Stratigraphy, Plants and Sporopollen. Geological Publishing House, Beijing. (In Chinese)Google Scholar
Jung, W. 1958. Zur Biologie und Morphologie einiger disperser Megasporen vergleichbar mit solchen von Lycostrobus scottii aus dem Rhät-Lias Frankens. Nordösten Bayern Geologische Blatter, 8:114130.Google Scholar
Karrfalt, E. E. 1984. The origin and early development of the root-producing meristem of Isoetes andicola L. D. Gomez. Botanical Gazette, 145:372377.CrossRefGoogle Scholar
Karrfalt, E. E., and Eggert, D. A. 1977. The comparative morphology and development of Isoetes L. II. Branching of the base of the corm in I. tuckermannii A. Br. and I. nuttallii A. Br. Botanical Gazette, 138:357368.CrossRefGoogle Scholar
Kelber, K.-P. 1990. Die versunkene Pflanzenwelt aus den Delta-sümpfen Mainfrankens vor 230 Millionen Jahren. Beringeria, 1,67 p.Google Scholar
King, G. M. 1990. The Dicynodonts: A Study in Paleobiology. Chapman and Hall, London, 233 p.Google Scholar
Kon'no, E. 1973. New species of Pleuromeia and Neocalamites from the Upper Scythian beds in the Kitakami Massif, Japan. Science Reports, Geology, Tohoku University, 43:99115.Google Scholar
Knoll, A. H. 1984. Patterns of extinction in the fossil record of vascular plants, p. 2167. In Nitecki, M. (ed.), Extinctions. University of Chicago Press, Chicago.Google Scholar
Krassilov, V. A., and Zakharov, Y. D. 1975. Pleuromeia from the lower Triassic of the far east of the U.S.S.R. Review of Palaeobotany and Palynology, 199:221232.CrossRefGoogle Scholar
Lamotte, C. 1937. Morphology and orientation of the embryo in Isoetes. Annals of Botany, 1:695716.Google Scholar
Tele, K. M. 1962. Studies in the Indian Middle Gondwana flora—2. Plant fossils from the South Rewa Gondwana Basin. Palaeobotanist, 10:6983.Google Scholar
Linnaeus, C. 1753. Species plantarum, exhibientes plantas rite cognitas et genera relatas. Holmia, Laurentii Salvii, 2 vol., 149 p.Google Scholar
Lundblad, B. 1948. A selaginelloid strobilus from East Greenland (Triassic). Meddelelser Danske Geologische Foreningens, 11:351363.Google Scholar
Mader, D. 1990. Paleoecology of the flora in Buntsandstein and Keuper in the Triassic of Middle Europe. 2 vols. G. Fischer Verlag, Hannover, 1587 p.Google Scholar
Mägdefrau, K. 1931. Zur Morphologie und phylogenetischen Bedeutung der fossilen Pflanzengattung Pleuromeia. Beihefte Botanische Centralblatter, 48:119140.Google Scholar
Meng, F.-S. 1995. Middle Triassic lycopsid flora and its paleoecology in South China. Abstracts of the International Conference of Diversification and Evolution of Terrestrial Plants in Geologic Time, Nanjing, China, 3235.Google Scholar
Meyen, S. V. 1987. Fundamentals of Palaeobotany. Chapman and Hall, London, 432 p.CrossRefGoogle Scholar
Miller, C. N. 1968. The lepidophytic affinities of the genus Chinlea and Osmundites walkeri. American Journal of Botany, 55:109115.CrossRefGoogle Scholar
Mooutcheva, N. K. 1995. Stages of Triassic flora evolution in Siberia. Abstracts of the International Conference of Diversification and Evolution of Terrestrial Plants in Geologic Time, Nanjing, China, 3536.Google Scholar
Morante, R., Veevers, J. J., Andrew, A. S., and Hamilton, P. J. 1994. Determination of the Permian-Triassic boundary in Australia from carbon isotope stratigraphy. Australasian Petroleum Exploration Association Journal, 34:330336.Google Scholar
Morbelli, M. A., and Petriella, B. 1973. “Austrostrobus ornatum” nov. gen. et sp., cono petrificado de Lycopsida del Triasico de Santa Cruz (Argentina). Revista del Museo de La Plata 7, Paleontologia, 46:279289.Google Scholar
Naing, T. 1993. Trace fossils as palaeoenvironmental indicators in the Early to Middle Triassic Narrabeen Group. Proceedings of the Symposium on Advances in the Study of the Sydney Basin, Newcastle, 27:7784.Google Scholar
Nathorst, A. G. 1908. Paläobotanische Mitteilungen. 3. Lycostrobus scottii, eine grosse Sporophyllahr aus dem rhätischen Ablagerungen Schönens. Kungliga Svenska Vetenskaps Akademien Handlingar, 43:19.Google Scholar
Neuburg, M. F. 1936. K stratigrafii uglenosnikh otlozhenii kuznetskogo basseina (On the stratigraphy of the coal-bearing deposits of the Kuznetsk Basin). Izvestia Akademia Nauk S.S.S.R. Seriya Geologiskikh, 1936(4):469510.Google Scholar
Pfeiffer, N. E. 1922. Monograph of the Isoetaceae. Annals of the Missouri Botanical Garden, 9:79232.CrossRefGoogle Scholar
Pigg, K. B. 1992. Evolution of isoetalean lycopsids. Annals of the Missouri Botanical Garden, 79:589612.CrossRefGoogle Scholar
Pigg, K. B., and Rothwell, G. W. 1983a. Chaloneria gen. nov., heterosporous lycophyte from the Pennsylvanian of North America. Botanical Gazette, 144:132147.CrossRefGoogle Scholar
Pigg, K. B., and Rothwell, G. W. 1983b. Megagametophyte development in the Chaloneriaceae fam. nov., permineralized Paleozoic Isoetales (Lycopsida). Botanical Gazette, 144:295302.CrossRefGoogle Scholar
Pigg, K. B., and Rothwell, G. W. 1985. Cortical development in Chaloneria cormosa (Isoetales), and the biological derivation of compressed lycophyte decortication taxa. Palaeontology, 28:545553.Google Scholar
Playford, G. 1965. Plant microfossils from Triassic sediments near Poatina, Tasmania. Geological Society of Australia Journal, 12:173210.CrossRefGoogle Scholar
Rayner, R. J. 1992. Phyllotheca: the pastures of the Late Permian. Palaeogeography, Palaeoclimatology, Palaeoecology, 92:3140.CrossRefGoogle Scholar
Reinhardt, P., and Fricke, D. 1969. Megasporen aus dem unteren und mittleren Keuper Mecklenburgs. Mberichte Deutsche Akademie Wissenschaften Berlin, 11:399411.Google Scholar
Renne, P. R., Zhang, Z.-C., Richards, M. A., Black, M. T., and Basu, A. R. 1995. Synchrony and causal relations between Permian-Triassic boundary crisis and Siberian flood volcanism. Science, 209:14131416.CrossRefGoogle Scholar
Retallack, G. J. 1975. The life and times of a Triassic lycopod. Alcheringa, 1:329.CrossRefGoogle Scholar
Retallack, G. J. 1977. Triassic palaeosols from the Upper Narrabeen Group of New South Wales. Part II. Classification and reconstruction. Geological Society of Australia Journal, 24:1935.CrossRefGoogle Scholar
Retallack, G. J. 1980. Late Carboniferous to Middle Triassic megafossil floras in the Sydney Basin, p. 383430. In Helby, R. J. and Herbert, C. (eds.), A guide to the Sydney Basin. Bulletin of the Geological Survey of New South Wales, 26.Google Scholar
Retallack, G. J. 1994. A pedotype approach to latest Cretaceous and earliest Tertiary paleosols in eastern Montana. Geological Society of America Bulletin, 106:13771397.2.3.CO;2>CrossRefGoogle Scholar
Retallack, G. J. 1995a. Permian-Triassic life crisis on land. Science, 267:7780.CrossRefGoogle ScholarPubMed
Retallack, G. J. 1995b. An early Triassic fossil flora from Culvida Soak, Western Australia. Royal Society of Western Australia Journal, 78:5766.Google Scholar
Retallack, G. J. 1996. Early Triassic therapsid footprints from the Sydney Basin, Australia. Alcheringa, 20:301314.CrossRefGoogle Scholar
Retallack, G. J., and Dilcher, D. L. 1988. Reconstruction of selected seed ferns. Annals of the Missouri Botanical Garden, 75:10101057.CrossRefGoogle Scholar
Retallack, G. J., Renne, P. R., and Kimbrough, D. L. 1993. New radiometric ages for Triassic floras of southeast Gondwana, p. 415418. In Lucas, S. G. and Morales, M. (eds.), The Non-marine Triassic. New Mexico Museum of Natural History and Science Bulletin, 3.Google Scholar
Retallack, G. J., Veevers, J. J., and Morante, R. 1996. Global coal gap between Permo-Triassic extinction and Middle Triassic recovery of peat-forming plants. Geological Society of America Bulletin, 108:195207.2.3.CO;2>CrossRefGoogle Scholar
Roselt, G. 1992. Anatomie und Paläoökologie einer verkieselten Pleuromeia mit Zellstruktur aus dem Oberen Buntsandstein von Forschengereuth in Südthüringen, p. 81161. In Mader, D. (ed.), Beiträge zu Paläoökologie und Paläoenvironment des Buntsandsteins sowie ausgewählte Bibliographie von Buntsandstein und Keuper in Thüringen, Franken und Umbegung. Fischer, Stuttgart.Google Scholar
Sadovnikov, G. N. 1982a. The morphology, systematics and distribution of the genus Tomiostrobus. Paleontological Journal, 1982(1):100109.Google Scholar
Sadovnikov, G. N. 1982b. Pervaya nakhodka Pleuromeia na Taimyre (First discovery of Pleuromeia in Taimyr). Doklady Akademia Nauk S.S.S.R., 262:706710. (In Russian)Google Scholar
Sadovnikov, G. N. 1995. Palaeophyt/Mesophyt transition in the north from Tethys. Abstracts of the International Conference of Diversification and Evolution of Terrestrial Plants in Geological Time, Nanjing, China, 1718.Google Scholar
Schönlein, J. L. 1865. Abbildungen von fossilen Pflanzen aus dem Keuper Frankens. Kriedel, Wiesbaden, 22 p.Google Scholar
Schubert, J. K., and Bottjer, D. J. 1992. Early Triassic stromatolites as post-mass extinction disaster forms. Geology, 20:883886.2.3.CO;2>CrossRefGoogle Scholar
Schultz, E. 1967. Sporenpaläontologische Untersuchungen rätoliassischer Schichten im zentralteil des Germanischen Beckens. Palaontologische Abhandlungen, B2:542633.Google Scholar
Schuster, J. 1933. Bedheimia, ein Bärlappegewächs aus dem Keuper Thüringens. Beiträge zur Geologie von Thüringen, 3:239240.Google Scholar
Scott, A. C., and Playford, G. 1985. Early Triassic megaspores from the Rewan Group, Bowen Basin, Queensland. Alcheringa, 9:297323.CrossRefGoogle Scholar
Scott, D. H., and Hill, T. G. 1900. The structure of Isoetes hystrix. Annals of Botany, 14:413454.CrossRefGoogle Scholar
Seward, A. C. 1908. On a collection of fossil plants from South Africa. Geological Society of London Quarterly Journal, 64:83108.CrossRefGoogle Scholar
Skog, J. E., Dilcher, D. L., and Potter, F. W. 1992. A new species of Isoetes from the mid-Cretaceous Dakota Group of Kansas and Nebraska. American Fern Journal, 82:151161.CrossRefGoogle Scholar
Skog, J. E., and Hill, C. R. 1992. Mesozoic lycopods. Annals of the Missouri Botanical Garden, 79:648675.CrossRefGoogle Scholar
Snigirevskaya, S. N. 1980. Nakhodka novogo iskopaemogo roda isostovikh v rannetriasovikh otlozheniyakh vostochnoi sibiri (A new fossil genus of Isoetopsida in the Triassic of eastern Siberia). Botanicheskii Zhurnal, 65:9596. (In Russian)Google Scholar
Snigirevskaya, S. N. 1981. Takhtajanodoxa Snig.—novoe zveno v evolushii plaunovidnikh (Takhtajanodoxa Snig.—a new link in the evolution of lycopsids). Sbornik “Sistematiki i evolushii visiikh rastenii.” Nauka, Leningrad, p. 4554. (In Russian)Google Scholar
Snigirevskaya, S. N., and Srebrodolskaya, J. N. 1986. Pervaya nakhodka okamenelikh steblei Pleuromeia (Lycopodiophyta) s sokhranivshchimskaya anatomicheskim stroeniem (The first discovery of petrified stems of Pleuromeia (Lycopodiophyta) with preserved anatomical structure). Botanicheskii Zhurnal, 71:411415. (In Russian)Google Scholar
Sweet, W. C. 1992. A conodont based high-resolution biostratigraphy of the Permo-Triassic boundary interval, p. 120133. In Sweet, W. C., Yang, Z.-Y., Dickins, M., and Yin, H.-F. (eds.), Permo.-Triassic events in eastern Tethys. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Swofford, D. 1985. PAUP (Phylogenetic analysis using parsimony). Computer program, Illinois Natural History Survey, Urbana.Google Scholar
Taylor, C. W., and Hickey, R. J. 1992. Habitat, evolution and speciation in Isoetes. Annals of the Missouri Botanical Garden, 79:613622.CrossRefGoogle Scholar
Teichert, C. 1950. Some recent additions to stratigraphy of Western Australia. American Association of Petroleum Geologists Bulletin, 34:17811794.Google Scholar
Thomasson, J. R. 1985. Miocene fossil grasses: possible adaptations in reproductive bracts (palea and lemma). Annals of the Missouri Botanical Garden, 72:843851.CrossRefGoogle Scholar
Turner, S. 1984. An enigmatic Triassic fossil plant from The Crater, Rewan, Queensland. Queensland Naturalist, 24:9093.Google Scholar
Underwood, L. M. 1882. Our Native Ferns and Fern Allies. Henry Holt, New York, 8 volumes.Google Scholar
Veevers, J. J., Conaghan, P. J. G., and Shaw, S. E. 1994. Turning point in Pangean environmental history at the Permian/Triassic (P/Tr) boundary, p. 187196. In Klein, G. D. (ed.), Pangea: tectonics and sedimentation during assembly of a supercontinent. Geological Society of America Special Publication, 288.Google Scholar
Walkom, A. B. 1925. Fossil plants from the Narrabeen Stage of the Hawkesbury Series. Linnaean Society of N.S.W. Proceedings, 50:214224.Google Scholar
Walkom, A. B. 1941. Fossil plants from Gingin, W. A. Royal Society of Western Australia Journal, 28:201207.Google Scholar
Wang, Z.-Q. 1991. Advances on the Permo-Triassic lycopsids in north China. I. An Isoetes from the mid-Triassic in northern Shaanxi Province. Palaeontographica, B222:130.Google Scholar
Wang, Z.-Q., and Wang, L.-X. 1982. A new species of the lycopsid Pleuromeia from the early Triassic of Shanxi, China, and its ecology. Palaeontology, 25:215225.Google Scholar
Wang, Z.-Q., and Wang, L.-X. 1989. Earlier early Triassic fossil plants in Shiqienfeng Group in North China. Shanxi Geology, 4(1):2340. (In Chinese with English Abstract)Google Scholar
Wang, Z.-Q., and Wang, L.-X. 1990a. Late early Triassic fossil plants from the upper part of the Shiqienfeng Group in North China. Shanxi Geology, 5(2):97154. (In Chinese with English Abstract)Google Scholar
Wang, Z.-Q., and Wang, L.-X. 1990b. A new plant assemblage from the bottom of the mid-Triassic Ermaying Formation. Shanxi Geology, 5(4):303318. (In Chinese with English Abstract)Google Scholar
White, M. E. 1961. Appendix 6, p. 291310. In Veevers, J. J. and Wells, R. T. (eds.), The geology of the Canning Basin, Western Australia. Bureau of Mineral Resources Geology and Geophysics, Canberra, Bulletin, 60.Google Scholar
White, M. E. 1981. Cylomeia undulata (Burges) gen. et comb. nov., a lycopod of the Early Triassic strata of New South Wales. Records of the Australian Museum, 33:723734.CrossRefGoogle Scholar
White, M. E. 1986. The Greening of Gondwana. Reed, Balgowlah, 256 p.Google Scholar
White, M. E., and Yeates, A. N. 1976. Plant fossils from the northeastern part of the Canning. Basin, Western Australia. Bureau of Mineral Resources Geology and Geophysics, Canberra, Records, 1976/18, 32 p.Google Scholar
Wood, G. R., and Beeston, J. W. 1986. A late Permian lycopod cone Skilliostrobus sp. cf. S. australis Ash 1979 from Queensland. Geological Survey of Queensland, Publications, 387:4149.Google Scholar