Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T04:13:17.284Z Has data issue: false hasContentIssue false

Hinge and ecomorphology of Legumen Conrad, 1858 (Bivalvia, Veneridae), and the contraction of venerid morphospace following the end-Cretaceous extinction

Published online by Cambridge University Press:  09 December 2019

Katie S. Collins
Affiliation:
Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Ave, ChicagoIL60637, USA Current address: The Natural History Museum, Cromwell Road, SW7 5BD, UK
Stewart M. Edie
Affiliation:
Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Ave, ChicagoIL60637, USA
David Jablonski
Affiliation:
Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Ave, ChicagoIL60637, USA Committee on Evolutionary Biology, University of Chicago, Chicago, IL60637, USA

Abstract

The Veneridae are the most speciose modern family of bivalves, and one of the most morphologically conservative and homoplastic, making subfamily- and sometimes even genus-level classification difficult. The widespread Cretaceous genus Legumen Conrad, 1858 is currently placed in the subfamily Tapetinae of the Veneridae, although it more closely resembles the Solenoida (razor clams, Pharidae and Solenidae) in general shell form. Here we provide high-resolution images of the Legumen hinge for the first time. We confirm from hinge morphology that Legumen belongs in Veneridae, but it should be referred to incertae subfamiliae, rather than retained in the Tapetinae, particularly in light of the incomplete and unstable understanding of venerid systematics. Legumen represents a unique hinge dentition and a shell form—and associated life habit—that is absent in the modern Veneridae despite their taxonomic diversity. Veneridae are hyperdiverse in the modern fauna, but strikingly ‘under-disparate,’ having lost forms while gaining species in the long recovery from the end-Cretaceous extinction.

Type
Articles
Copyright
Copyright © 2019, The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, A., and Reeve, L.A., 1848–1850, Mollusca Part 3, in Adams, A., ed., The Zoology of the voyage of H.M.S. Samarang; under the command of Captain Sir Edward Belcher, C.B., F.R.A.S., S.G.S., during the years 1843–1846: London, Reeve and Benham, p. 4588.Google Scholar
Alvarez, M.J., 2019, Phylogenetic analysis of the genus Retrotapes del Río, 1997 (Bivalvia, Veneridae) and systematic analysis of its taxa from Chile: Journal of Paleontology, v. 93, p. 685701.CrossRefGoogle Scholar
d'Archaic, A., 1854, Coupe géologique des environs des Bains des Rennes (Aude) suivie de la description de quelques fossils de cette localité: Bulletin de las Société Géologique de France, Series 2, v. 11, p. 184204.Google Scholar
Carter, J.G., Altaba, C.R., Anderson, L.C., Araujo, R., Biakov, , et al. , 2011, A synoptical classification of the Bivalvia (Mollusca): Paleontological Contributions, University of Kansas, v. 4, p. 147. https://doi.org/10.17161/PC.1808.8287Google Scholar
Chen, J., Li, Q., Kong, L., and Zheng, X., 2011, Molecular phylogeny of venus clams (Mollusca, Bivalvia, Veneridae) with emphasis on the systematic position of taxa along the coast of mainland China: Zoologica Scripta, v. 40, p. 260271.CrossRefGoogle Scholar
Coan, E.V., and Valentich-Scott, P., 2012, Bivalve seashells of tropical west America: Santa Barbara Museum of Natural History Monographs Number 6, Studies in Biodiversity, v. 2, 597 p.Google Scholar
Collignon, M., 1981, Faune albo-cenomanienne de la formation du marnes de Kazhdumi, region du Fars—Khuzestan (Iran): Documents du Laboratoire de Geologie de l'Universite de Lyon, hors, v. 6, p. 251291.Google Scholar
Collins, K.S., Edie, S.M., Hunt, G., Roy, K., and Jablonski, D., 2018, Extinction risk in extant marine species integrating palaeontological and biodistributional data: Proceedings of the Royal Society B: Biological Sciences, v. 285, 20181698.CrossRefGoogle ScholarPubMed
Collins, K.S., Edie, S.M., Gao, T., Bieler, R. and Jablonski, D., 2019, Spatial filters of function and phylogeny determine morphological disparity with latitude: PloS One, v.14, 0221490.CrossRefGoogle ScholarPubMed
Conrad, T.A., 1858, Observations on a group of Cretaceous fossil shells, found in Tippah County, Miss., with descriptions of fifty-six new species: Journal of the Academy of Natural Sciences of Philadelphia v. 3 p. 323336.Google Scholar
Conrad, T.A., 1875, Descriptions of new genera and species of fossil shells of North Carolina, in the State cabinet at Raleigh, in Kerr, W.C., ed., Report of the Geological Survey of North Carolina, v. 1, Appendix A: Raleigh, N.C., J. Turner, p. 128.Google Scholar
Coquand, H., 1865, Monographie de l’étage Aptien de l'Espagne: Mémoires de la Société d'Emulation de la Provence, Marseille, v. 5, p. 191413.Google Scholar
Dartevelle, E., and Freneix, S., 1957, Mollusques fossiles du Crétacé de la côte occidentale d'Afrique du Cameroun à l'Angola. II. Lamellibranches: Annales du Musée Royal du Congo Belge, Sciences Géologiques, v. 20, 271 p.Google Scholar
d'Orbigny, A.D., 1845, Paléontologie Française. Terrains Crétacés, v. 3, Lamellibranchia: Paris, G. Masson, p. 289448.Google Scholar
del Rio, C.J., 1997, Cenozoic biogeographic history of the eurythermal genus Retrotapes, new genus (Subfamily Tapetinae) from southern South America and Antarctica: Nautilus, v. 110, p. 7793.Google Scholar
Ebersole, S., 2016, The Late Cretaceous Coon Creek Formation type section: an introduction to the lithofacies and time-equivalent units: Bulletin of the Alabama Museum of Natural History, v. 33, p. 14.Google Scholar
Edie, S.M., Jablonski, D., and Valentine, J.W., 2018, Contrasting responses of functional diversity to major losses in taxonomic diversity: Proceedings of the National Academy of Sciences USA, v. 115, p. 732737.CrossRefGoogle ScholarPubMed
Gabb, W.M., 1864, Descriptions of the Cretaceous fossils: California Geological Survey, Paleontology v. 1, p. 55217.Google Scholar
Harte, M.E., 1998, Is Cyclininae a monophyletic subfamily of Veneridae (Bivalvia)?: Malacologia, v. 40, p. 297304.Google Scholar
Huber, M., 2010, Compendium of bivalves. A full-color guide to 3,300 of the world's marine bivalves. A status on Bivalvia after 250 years of research: Hackenheim, Germany, Conchbooks, 904 p.Google Scholar
Huber, M., 2015, Compendium of Bivalves 2. A full-colour guide to the remaining seven families. A systematic listing of 8,500 bivalve species and 10,500 synonyms: Hackenheim, Germany, Conchbooks, 907 p.Google Scholar
Jablonski, D., 2017, Approaches to macroevolution: 2. Sorting of variation, some overarching issues, and general conclusions: Evolutionary Biology, v. 44, p.451475.CrossRefGoogle ScholarPubMed
Kappner, I., and Bieler, R., 2006, Phylogeny of venus clams (Bivalvia: Venerinae) as inferred from nuclear and mitochondrial gene sequences: Molecular Phylogenetics and Evolution, v. 40, p. 317331.CrossRefGoogle ScholarPubMed
Keen, A.M., 1969, Superfamily Veneracea Rafinesque, 1815, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Part N, Mollusca 6, Bivalvia, 1. Lawrence, Geological Society of America and University of Kansas Press, p. N670N690.Google Scholar
Kosnik, M.A., Jablonski, D., Lockwood, R., and Novack-Gottshall, P.M., 2006, Quantifying molluscan body size in evolutionary and ecological analyses: maximizing the return on data-collection efforts: Palaios, v. 21, p. 588597.CrossRefGoogle Scholar
Lamarck, J.-B.P.A. de M., Chevalier de, , 1818, Histoire des animaux sans vertèbres, Tome 5, Classe 11: Les Conchifères (Conchifera): Paris, Deterville and Verdière, p. 411612.Google Scholar
Lemer, S., Bieler, R. and Giribet, G., 2019, Resolving the relationships of clams and cockles: dense transcriptome sampling drastically improves the bivalve tree of life: Proceedings of the Royal Society B, 286, p.20182684.CrossRefGoogle ScholarPubMed
Lightfoot, J., 1786, A catalogue of the Portland Museum, lately the property of the Duchess Dowager of Portland, deceased: which will be sold by auction, by Mr Skinner and Co. on Monday the 24th of April, 1786: London, Skinner and Co., 194 p.Google Scholar
Linnaeus, C., 1758, Systema Naturae per regna tria naturae, secundum Classes, Ordines, Genera, Species, cum characteribus et differentiis. Editio decima, reformata. Tom I: Holmiae, Laurentii Salvii, 824 p.Google Scholar
Linnaeus, C., 1767, Systema Naturae per regnat riae naturae. Tom. I. Pars II. Editio duodecima, reformata: Holmiae, Laurentii Salvii, p. 5531327.Google Scholar
Linnaeus, C., 1771, Mantissa plantarum, altera. Regni animalis, appendix: Holmiae, Laurentii Salvii, 584 p.Google Scholar
Marwick, J., 1948, Lower Pliocene Mollusca from Otahuhu, Auckland: New Zealand Geological Survey Paleontological Bulletin, v. 16, 38 p.Google Scholar
Matheron, P., 1843, Catalogue méthodique et descriptive des Corps organisés fossiles du Département des Bouches-du-Rhône et lieux circonvoisons: Répertoire de travaux de las Société Statistique de Marseille, v. 6, p. 1269.Google Scholar
Mikkelsen, P.M., Bieler, R., Kappner, I., and Rawlings, T.A., 2006, Phylogeny of Veneroidea (Mollusca: Bivalvia) based on morphology and molecules: Zoological Journal of the Linnean Society, v. 148, p. 439521.CrossRefGoogle Scholar
Polly, P.D., and MacLeod, N., 2008, Locomotion in fossil Carnivora: an application of eigensurface analysis for morphometric comparison of 3D surfaces: Palaeontologia Electronica, v. 11, p. 1013.Google Scholar
Rennie, J.V.L., 1929, Cretaceous Fossils from Angola (Lamellibranchia and Gastropoda): Annals of the South African Museum, v. 28, p. 154.Google Scholar
Roopnarine, P.D., 2001, A history of diversification, extinction, and invasion in tropical America as derived from species-level phylogenies of Chionine genera (family Veneridae): Journal of Paleontology, v. 75, p. 644657.CrossRefGoogle Scholar
Seilacher, A., and Gishlick, A.D., 2014, Morphodynamics: Boca Raton, CRC Press, 531 p.CrossRefGoogle Scholar
Sepkoski, J.J., 2002, A compendium of fossil marine animal genera: Bulletins of American Paleontology, v. 363, p. 1560.Google Scholar
Sohl, N.F., and Koch, C.F., 1983, Upper Cretaceous (Maestrichtian) Mollusca from the Haustator bilira Assemblage Zone in the East Gulf Coastal Plain: U.S. Geological Survey Open-File Report, v. 83–451, 237 p.Google Scholar
Sohl, N.F., and Koch, C.F., 1984, Upper Cretaceous (Maestrichtian) larger invertebrate fossils from the Haustator bilira Assemblage Zone in the West Gulf Coastal Plain: U.S. Geological Survey Open-File Report, v. 84–687, 282 p.Google Scholar
Sohl, N.F., and Koch, C.F., 1987, Upper Cretaceous (Maestrichtian) larger invertebrate fossils from the Haustator bilira Assemblage Zone in the Atlantic Coastal Plain with further data for the East Gulf: U.S. Geological Survey Open-File Report, v. 87–194, 172 p.Google Scholar
Stanley, S.M., 1970, Relation of shell form to life habits of the Bivalvia (Mollusca): Geological Society of America Memoir, v. 125, 296 p.Google Scholar
Stanley, S.M., 1975, Why clams have the shape they have: an experimental analysis of burrowing: Paleobiology, v. 1, p. 4858.CrossRefGoogle Scholar
Stephenson, L.W., 1923, The Cretaceous formations of North Carolina. Part 1: Invertebrate fossils of the upper Cretaceous Formations: North Carolina Geological and Economic Survey Publications Volume 5, Raleigh, Edwards and Broughton, 604 p.Google Scholar
Stephenson, L.W., 1941, The larger invertebrate fossils of the Navarro Group of Texas: University of Texas Publication v. 4101, 641 p.Google Scholar
Stoliczka, F. 1870–1871, Cretaceous Fauna of Southern India: The Pelecypoda, with a review of all known genera of this class, fossil and Recent: Memoirs of the Geological Survey of India, Calcutta (series 1), v. 3, 535 p.Google Scholar