Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T03:32:39.050Z Has data issue: false hasContentIssue false

Middle Miocene fossil grasses from Fort Ternan, Kenya

Published online by Cambridge University Press:  20 May 2016

Daniel P. Dugas
Affiliation:
Departments of Geography and Geological Sciences, University of Oregon, Eugene 97403
Gregory J. Retallack
Affiliation:
Departments of Geography and Geological Sciences, University of Oregon, Eugene 97403

Abstract

At the well-known fossil mammal locality of Fort Ternan in southwestern Kenya, radiometrically dated at about 14 million years old (middle Miocene), fossil grasses have been preserved by nephelinitic sandstone in place of growth above a brown paleosol (type Onuria clay). Large portions of grass plants as well as fragments of leaves have revealed details of silica bodies, stomates, and other taxonomically important features under the scanning electron microscope. The computer database for grass identification compiled by Leslie Watson and colleagues was used to determine the most similar living grass genera to the five distinct kinds of fossil found. Two of the fossil species are assigned to Cleistochloa kabuyis sp. nov. and C. shipmanae sp. nov. This genus includes one species from low fertility dry woodland soils of New South Wales and Queensland and a second species from “raw clay soils” in western New Guinea. A third fossil species, represented by a large portion of a branching culm, is assigned to Stereochlaena miocenica sp. nov. This genus includes five species of low-fertility woodland soils in southeastern Africa. Both Cleistochloa and Stereochlaena are in the supertribe Panicanae of the subfamily Panicoideae. A fourth species is assigned to Distichlis africana sp. nov. and provides a biogeographic link between the single species of this genus now living in coastal grasslands in southeastern Australia and the 12 species of dunes and deserts found throughout the Americas from Patagonia and the West Indies to the United States and Canada. A fifth species is, like D. africana, in the subfamily Chloridoideae, but its stomata were not seen and it could belong to Cyclostachya, Pogoneura, or Polevansia. This earliest known wooded grassland flora in Africa is taxonomically unlike the modern grass flora of fertile volcanic African landscapes, and may have been recruited from an archaic grass flora of Gondwanan desert and lateritic soils.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, P. 1981. Species diversity and diet in monkeys and apes during the Miocene, p. 2561. In Stringer, C. B. (ed.), Aspects of Human Evolution. Taylor & Francis, London.Google Scholar
Axelrod, D. I., and Raven, P. H. 1978. Late Cretaceous and Tertiary vegetation history, p. 77130. In Werger, M. J. A. and Van Bruggen, A. C. (eds.), Biogeography and Ecology of Southern Africa. Junk, Hague.Google Scholar
Barker, D. S., and Nixon, P. H. 1983. Carbonatite lava and “welded” air-fall tuff (natural Portland cement, Fort Portal field, western Uganda). Eos, 64:896.Google Scholar
Beadle, N. C. W. 1966. Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly. Ecology, 47:9911007.Google Scholar
Beadle, N. C. W. 1981. The Vegetation of Australia. Cambridge University Press, London, 690 p.Google Scholar
Bell, R. H. V. 1982. The effect of soil nutrient availability on community structure in African ecosystems, p. 193216. In Huntley, B. J. and Walker, B. H. (eds.), Ecology of Tropical Savannas. Springer, Berlin.CrossRefGoogle Scholar
Bernor, R. L. 1983. Geochronology and zoogeographic relationships of Miocene Hominoidea, p. 2164. In Ciochon, R. L. and Corruchini, R. S. (eds.), New Interpretations of Ape and Human Ancestry. Plenun, New York.CrossRefGoogle Scholar
Bleeker, P. 1983. Soils of Papua New Guinea. Australian National University Press, Canberra, 352 p.Google Scholar
Bogdan, A. V. 1976. A Revised List of Kenya Grasses. Government Printing Office, Nairobi, 80 p.Google Scholar
Bonnefille, R. 1984. Cenozoic vegetation and environments of early hominoids in East Africa, p. 579612. In Whyte, R. O. (ed.), The Evolution of the East Asian Environment. Volume II. Palaeobotany, Palaeozoology and Palaeoanthropology. Centre of Asian Studies, Hong Kong.Google Scholar
Bonnefille, R., Vincens, A., and Buchet, G. 1987. Palynology, stratigraphy and palaeoenvironment of a Pliocene hominid site (2.9–3.3 m.yr) at Hadar, Ethiopia. Palaeogeography, Palaeoclimatology, Palaeoecology, 60:249281.CrossRefGoogle Scholar
Braun, A. C. H. 1853. Das Individuum de Pflanze in seinem Verhältnisse zur Species. Abhandlugen der Akademie der Wissenschaften, Berlin, 1853:14.Google Scholar
Cerling, T. E., Quade, J., Ambrose, S. R., and Sikes, N. E. 1991. Fossil soils, grasses and carbon isotopes from Fort Ternan: grassland or woodland? Journal of Human Evolution, 21:295306.CrossRefGoogle Scholar
Christensen, N. L. 1988. Vegetation of the southeastern coastal plain, p. 317363. In Barbour, M. G. and Billings, W. D. (eds.), North American Terrestrial Vegetation. Cambridge University Press, Cambridge.Google Scholar
Clayton, W. D. 1970. Gramineae (part 1), p. 1176. In Milne-Redhead, E. and Polhill, R. M. (eds.), Flora of Tropical East Africa. Crown Agents for Oversea Governments and Administrations, London.Google Scholar
Clayton, W. D. 1975. Chorology of the genera of Gramineae. Kew Bulletin, 30:111132.CrossRefGoogle Scholar
Clayton, W. D. 1978. The genus Stereochlaena . Kew Bulletin, 33:295298.Google Scholar
Clayton, W. D. 1981. Evolution and distribution of grasses. Annals of the Missouri Botanical Garden, 68:514.Google Scholar
Clayton, W. D., Phillips, S. M., and Renvoize, S. A. 1974. Gramineae (part 2), p. 177450. In Milne-Redhead, E. and Polhill, R. M. (eds.), Flora of Tropical East Africa. Crown Agents for Oversea Governments and Administrations, London.Google Scholar
Clayton, W. D., and Renvoize, S. A. 1982. Gramineae (part 3), p. 451898. In Polhill, R. M. (ed.), Flora of Tropical East Africa. A. A. Balkema, Rotterdam.Google Scholar
Crocker, R. L. 1944. Soil and vegetation relationships in the lower southeast of South Australia. Transactions of the Royal Society of South Australia, 68:144172.Google Scholar
Cross, R. A. 1980. Distribution of subfamilies of Gramineae in the Old World. Kew Bulletin. 35:279289.CrossRefGoogle Scholar
Dalrymple, G. B. 1979. Critical tables for conversion of K-Ar ages from old to new constants. Geology, 7:558560.2.0.CO;2>CrossRefGoogle Scholar
Dechamps, R. 1987. Xylotomy of fossil wood from the Sahabi Formation, p. 3741. In Boaz, N. T., El Arnauti, A., Gaziry, A. W., De Heinzelin, J., and Boaz, D. D. (eds.), Neogene Paleontology and Geology of Sahabi. Alan R. Liss, New York.Google Scholar
den Hartog-van der Tholen, R. M., and Baas, P. 1978. Epidermal characters of the Celastraceae sensu lato . Acta Botanica Neerlandica, 27:355388.Google Scholar
de Wit, H. A. 1978. Soils and Grassland Types of the Serengeti Plain (Tanzania). Center for Agricultural Publishing and Documentation, Wageningen, Netherlands, 300 p.Google Scholar
Dilcher, D. L. 1965. Epiphyllous fungi from Eocene deposits in western Tennessee, U.S.A. Palaeontographica, B116:154.Google Scholar
Dugas, D. P. 1989. Middle-Miocene fossil grasses and associated paleosol from Fort Ternan, Kenya: geology, taphonomy and taxonomy. Unpubl. , Interdisciplinary Studies Program, University of Oregon, 118 p.Google Scholar
Ellis, R. P. 1987. A review of comparative leaf blade anatomy in the systematics of Poaceae: the past twenty five years, p. 310. In Soderstrom, T. R., Hilu, K. W., Campbell, C. S., and Barkworth, M. E. (eds.), Grass Systematics and Evolution. Smithsonian Institution Press, Washington, D.C. Google Scholar
Estes, R. 1962. A fossil gerrhosaur from the Miocene of Kenya. Breviora, 158:19.Google Scholar
Fisher, R. V., and Schminke, H.-U. 1984. Pyroclastic Rocks. Springer, New York, 472 p.Google Scholar
Hackel, E. 1908. List of grasses collected at Bulawayo by M. D. W. Jeffreys, and description of new Rhodesian grasses. Proceedings of the Rhodesian Science Association, 7:1170.Google Scholar
Hamilton, A. C. 1968. Some plant fossils from Bukwa. Uganda Journal, 32:157164.Google Scholar
Hartley, W. 1964. The distribution of grasses, p. 2946. In Barnard, C. (ed.), Grasses and Grasslands. Macmillan, London.Google Scholar
Hay, R. L. 1986. Role of tephra in the preservation of fossils in Cenozoic deposits of East Africa, p. 339344. In Frostick, L. E., Renaut, R. W., Reid, I., and Tiercelin, J. J. (eds.), Sedimentation in the African Rifts. Special Publication of the Geological Society of London, 25.Google Scholar
Hay, R. L. 1989. Holocene carbonatite-nephelinite tephra deposits of Oldoinyo-Lengai, Tanzania. Journal of Volcanology and Geothermal Research, 37:7791.CrossRefGoogle Scholar
Herrera, C. M. 1985. Grass/grazer radiations: an interpretation of silica body diversity. Oikos, 45:446447.Google Scholar
Hill, A., and Ward, S. 1988. Origin of the Hominidae: the record of African large hominid evolution between 14 My and 4 My. Yearbook of Physical Anthropology, 31:4983.CrossRefGoogle Scholar
Hill, R. S. 1990. Evolution of the modern high latitude southern hemisphere flora: evidence from the Australian macrofossil record. Proceedings of the 3rd International Organization for Paleobotany Conference, Melbourne, p. 3142.Google Scholar
Hitchcock, A. S. 1971. 1971. Manual of the Grasses of the United States. Second edition edited by Chase, A. Volume 1. Dover, New York, 569 p.Google Scholar
Hubbard, C. E. 1933. Cleistochloa subjuncea C. E. H. Hooker's Icones Plantarum, no. 33, 3209:16.Google Scholar
Jacobs, B. F., and Kabuye, C. H. S. 1987. A middle Miocene (12.2 m.y. old) forest in the East African Rift Valley. Journal of Human Evolution, 16:147155.Google Scholar
Jussieu, A. L. 1789. Genera Plantarum Secundum Ordines Naturales Disposita. Barrois, Paris, 498 p. (facsimile edition of 1964, edited by F. A. Stafleu, Wheldon and Wesley, Codicote, England).Google Scholar
Kappelman, J. 1991. The paleoenvironment of Kenyapithecus at Fort Ternan. Journal of Human Evolution, 20:95129.Google Scholar
Kedves, M. 1971. Présence de types sporomorphes importants dans les sédiments préquatemaires Egyptiens. Acta Botanica Academia Sciencia Hungarica, 17:371378.Google Scholar
Kellog, E. H., and Campbell, C. S. 1987. Phylogenetic analyses of the Gramineae, p. 310322. In Soderstrom, T. R., Hilu, K. W., Campbell, C. S., and Barkworth, M. E. (eds.), Grass Systematics and Evolution. Smithsonian Institution Press, Washington, D.C. Google Scholar
Kovach, W. L., and Dilcher, D. L. 1984. Dispersed cuticles from the Eocene of North America. Botanical Journal of the Linnaean Society, 88:63104.Google Scholar
Leakey, L. S. B. 1952. Lower Miocene invertebrates from Kenya. Nature. 169:624625.Google Scholar
Leakey, M. D., and Harris, J. M. (eds.). 1987. Laetoli, a Pliocene Site in Northern Tanzania. Clarendon Press, Oxford, 561 p.Google Scholar
Leys, C. A. 1983. Volcanic and sedimentary processes during formation of the Saefell tuff-ring, Iceland. Transactions of the Royal Society of Edinburgh, Earth Sciences, 74:1522.Google Scholar
Lockwood, J. P., and Lipman, P. W. 1980. Recovery of datable charcoal beneath young lavas. Bulletin Volcanologique, 43:609615.Google Scholar
MacMahon, J. A. 1988. Warm deserts, p. 231264. In Barbour, M. G. and Billings, W. D. (eds.), North American Terrestrial Vegetation. Cambridge University Press, Cambridge.Google Scholar
McNaughton, S. J., and Tarrants, J. L. 1983. Grass leaf silicification: natural selection for an inducible defense against herbivores. Proceedings of the National Academy of Sciences, U.S.A., 80:790791.Google Scholar
Metcalfe, C. R. 1960. Anatomy of the Monocotyledons. Volume I. Gramineae. Clarendon Press, Oxford, 731 p.Google Scholar
Oross, J. W., and Thompson, W. W. 1982. The ultrastructure of the salt glands of Cynodon and Distichlis (Poaceae). American Journal of Botany, 69:939949.Google Scholar
Palmer, P. G. 1976. Grass cuticles: a new paleoecological tool for East African lake sediments. Canadian Journal of Botany, 45:17251735.Google Scholar
Palmer, P. G., and Gerbeth-Jones, S. 1986. A scanning electron microscope survey of the epidermis of East African grasses, IV. Smithsonian Contributions to Botany, 62:1120.Google Scholar
Palmer, P. G., and Gerbeth-Jones, S. 1988. A scanning electron microscope survey of the epidermis of East African grasses, V and West African supplement. Smithsonian Contributions to Botany, 67:1157.Google Scholar
Palmer, P. G., Gerbeth-Jones, S., and Hutchinson, S. 1985. A scanning electron microscope survey of the epidermis of East African grasses, III. Smithsonian Contributions to Botany, 55:1136.Google Scholar
Palmer, P. G., and Tucker, A. E. 1981. A scanning electron microscope survey of the epidermis of East African grasses, I. Smithsonian Contributions to Botany, 49:184.Google Scholar
Palmer, P. G., and Tucker, A. E. 1983. A scanning electron microscope survey of the epidermis of East African grasses, II. Smithsonian Contributions to Botany, 53:172.CrossRefGoogle Scholar
Paulian, R. 1976. Three fossil dung beetles (Coleoptera: Scarabaeidae) from the Kenya Miocene. Journal of the East African Natural History Society and National Museum, 31(158):14.Google Scholar
Pickford, M. 1981. Preliminary Miocene mammalian biostratigraphy for western Kenya. Journal of Human Evolution, 10:7397.Google Scholar
Pickford, M. 1984. Kenya Palaeontology Gazeteer. Volume 1. Western Kenya. National Museums of Kenya, Nairobi, 262 p.Google Scholar
Pickford, M. 1986. Cenozoic paleontological sites in western Kenya. Münchner Geowissenschaftliche Abhandlungen Reihe A, Geologie und Pälantologie, 8, 151 p.Google Scholar
Radosevich, S. C., Retallack, G. J., and Taieb, M. 1992. A reassessment of the ecology and preservation of hominid fossils from Hadar, Ethiopia. American Journal of Physical Anthropology, 87:1527.Google Scholar
Rafinesque, C. S. 1819. Prodrome des nouveaux genres de plantes observés en 1817 et 1818 dans l'intérieur des États-Unis d'Amerique. Journal de Physique, Chimie et Histoire Naturelle, 89:96101.Google Scholar
Reeder, J. R. 1948. The Gramineae-Panicoideae of New Guinea. Journal of the Arnold Arboretum, 29:257319.Google Scholar
Retallack, G. J. 1990. Soils of the Past: An Introduction to Paleopedology. Unwin-Hyman, London, 520 p.Google Scholar
Retallack, G. J. 1991. Miocene Paleosols and Ape Habitats in Pakistan and Kenya. Oxford University Press, New York, 352 p.Google Scholar
Retallack, G. J. 1992. Comment on the paleoenvironment of Kenyapithecus at Fort Ternan. Journal of Human Evolution, 23 (in press).Google Scholar
Retallack, G. J., Dugas, D. P., and Bestland, E. A. 1990. Fossil soils and grasses of a middle Miocene East African grassland. Science, 247:13251328.Google Scholar
Roselt, G., and Schneider, W. 1969. Cuticulae dispersae, ihre Merkmale, Nomenklatur und Klassifikation. Paläontologische Abhandlungen, 3:1128.Google Scholar
Rouy, G. 1913. Flore de France. Volume 14. Asnières et Rochefort, Paris, 562 p.Google Scholar
Salard-Cheboldaeff, M. 1979. Palynologie maestrichtienne et tertiáre du Cameroun. Étude qualitative et repartition verticale des principales éspeces. Reviews of Palaeobotany and Palynology, 28:365388.CrossRefGoogle Scholar
Shipman, P. 1977. Paleoecology, taphonomic history and population dynamics of the vertebrate assemblage from the middle Miocene of Fort Ternan, Kenya. Unpubl. , Department of Anthropology, New York University, New York, 410 p.Google Scholar
Shipman, P., Walker, A., Van Couvering, J. A., Hooker, P. J., and Miller, J. A. 1981. The Fort Ternan hominoid site, Kenya: geology, age, taphonomy and paleoecology. Journal of Human Evolution, 10:4972.Google Scholar
Sims, P. L. 1988. Grasslands, p. 265286. In Barbour, M. G. and Billings, W. D. (eds.), North American Terrestrial Vegetation. Cambridge University Press, Cambridge.Google Scholar
Smiley, C. J., and Huggins, L. M. 1981. Pseudofagus idahoensis n. gen. et. sp. (Fagaceae) from the Miocene Clarkia flora of Idaho. American Journal of Botany, 68:741761.Google Scholar
Soil Survey Staff. 1975. Soil taxonomy. Handbook of the U.S. Department of Agriculture, 463, 754 p.Google Scholar
Stebbins, G. L. 1982. Major trends of evolution in the Poaceae and their possible significance, p. 136. In Estes, J. R., Tyrl, R. J. and Brunken, J. N. (eds.), Grasses and Grasslands. University of Oklahoma Press, Norman.Google Scholar
Stevenson, F. J. 1986. Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur and Micronutrients. Wiley, New York, 380 p.Google Scholar
Swofford, D. L. 1985. PAUP: phylogenetic analysis using parsimony. Verson 2.4.1. Privately distributed, D. L. Swofford, Urbana, Illinois.Google Scholar
Thackray, G. D. 1989. Paleoenvironmental analysis of paleosols and associated fossils in Miocene volcaniclastic deposits, Rusinga Island, western Kenya. Unpubl. , Department of Geological Sciences, University of Oregon, Eugene, 129 p.Google Scholar
Thomasson, J. R. 1979. Late Cenozoic grasses and other angiosperms from Kansas, Nebraska and Colorado: biostratigraphy and relationships to living taxa. Bulletin of the Geological Survey of Kansas, 218, 68 p.Google Scholar
Thomasson, J. R. 1987. Fossil grasses: 1820–1986 and beyond, p. 159167. In Soderstrom, T. R., Hilu, K. W., Campbell, C. S., and Barkworth, M. E. (eds.), Grass Systematics and Evolution. Smithsonian Institution Press, Washington, D.C. Google Scholar
Tieszen, L. L., Senyima, M. M., Imbamba, S. K., and Troughton, J. H. 1979. The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologia, 37:337350.Google Scholar
Tothill, J. C., and Hacker, J. B. 1983. The Grasses of Southern Queensland. University of Queensland Press, St Lucia, 475 p.Google Scholar
Twiss, P. C., Suess, E., and Smith, R. M. 1969. Morphological classification of grass phytoliths. Proceedings of the Soil Science Society of America, 33:109114.CrossRefGoogle Scholar
Upchurch, G. R. 1984. Cuticle evolution in Early Cretaceous angiosperms from the Potomac Group of Virginia and Maryland. Annals of the Missouri Botanical Garden, 71:522550.Google Scholar
Van Couvering, J. A. 1972. Radiometric calibration of the European Neogene, p. 247271. In Bishop, W. W., Miller, J. A., and Cole, S. (eds.), Calibration of Hominoid Evolution. Scottish Academic Press, Edinburgh.Google Scholar
Vesey-Fitzgerald, D. F. 1973. East African Grasslands. East Africa Publishing, Nairobi, 95 p.Google Scholar
Watson, L., Clifford, H. T., and Dallwitz, M. J. 1985. The classification of Poaceae: subfamilies and supertribes. Australian Journal of Botany, 33:433484.Google Scholar
Watson, L., and Dallwitz, M. J. 1989. Grass Genera of the World: Illustrations of Characters, Descriptions, Classification, Interactive Identification, Information Retrieval. Booklet (45 p.), Microfiche and Computer Program, privately distributed, L. Watson, Canberra, Australia.Google Scholar
Watson, L., Dallwitz, M. J., and Johnston, C. R. 1986. Grass genera of the world: 728 detailed descriptions from an automated database. Australian Journal of Botany, 34:223290.Google Scholar
Watson, L., Gibbs Russell, G. E., and Dallwitz, M. J. 1989. Grass genera of southern Africa: interactive identification and data retrieval from an automated data bank. Suid Afrikaans Tydskryft Plantkunde, 55:452463.Google Scholar
West, N. E. 1988. Intermountain deserts, shrub steppes and woodlands, p. 209230. In Barbour, M. G. and Billings, W. D. (eds.), North American Terrestrial Vegetation. Cambridge University Press, Cambridge.Google Scholar
White, F. 1983. The vegetation of Africa: A Descriptive Memoir to Accompany the U.N.E.S.C.O./A.E.T.F.A.T./U.N.S.O. Vegetation Map of Africa. U.N.E.S.C.O., Paris, 356 p.Google Scholar
Wilson, E. O., and Taylor, R. W. 1964. A fossil ant colony: new evidence of social antiquity. Psyche, 71:93103.Google Scholar