Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T03:46:34.443Z Has data issue: false hasContentIssue false

New well-preserved scleritomes of Chancelloridae from the early Cambrian Yuanshan Formation (Chengjiang, China) and the middle Cambrian Wheeler Shale (Utah, USA) and paleobiological implications

Published online by Cambridge University Press:  14 July 2015

Dorte Janussen
Affiliation:
Forschungsinstitut und Naturmuseum Senckenberg, Senckenberganlage 25, 60325 Frankfurt am Main, Germany,
Michael Steiner
Affiliation:
Technische Universität Berlin, Sekr. ACK 14, 13355 Berlin, Germany,
Zhu Maoyan
Affiliation:
Nanjing Institute of Geology and Palaeontology, Academia Sinica, Nanjing 210008, P. R. China,

Abstract

From the early Cambrian of Yunnan, China, new chancellorid scleritomes assigned to Allonnia junyuani new species are described and compared with scleritomes of Chancelloria eros Walcott, 1920 from the Middle Cambrian of Utah, USA and isolated phosphatized chancellorid sclerites from the Georgina Basin of North Australia. Characters of the entirely preserved chancellorids offer new insight into the paleobiology of Chancelloridae. An irregular thickening at the inferred base of the narrow body end of Chancelloria eros from Utah is interpreted as a root bulb that anchored the sessile animal in the soft bottom sediment. Sclerites show gradual increase in size from the narrower towards the broader upper end of the chancellorid body. A central “gastral” lumen was not directly observed in any of the investigated specimens, but the orientation of sclerites towards the outer body surface indicates that the fossils are secondarily flattened due to compaction and were originally hollow. Taphonomy of isolated chancellorid sclerites from the Georgina Basin, Australia, indicates a biomineralization very different from that of sponge spicules, including the spongin spiculoids of demospongid Keratosa. Allonnia junyuani from Chengjiang (Yunnan) exhibits a prominent epidermis, probably with stable epithelian cell-to-cell connections. This feature excludes a sponge affiliation of the Chancelloridae and points towards a systematic position of this group within the epithelian-bearing animals and thus well above the Porifera.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ax, P. 1995. Das System der Metazoa I, Ein Lehrbuch der phylogenetischen Systematik. Gustav Fischer Verlag, Stuttgart, 226 p.Google Scholar
Bengtson, S. 1992. The cap-shaped Cambrian fossil Maikhanella and the relationship between Coeloscleritophorans and molluscs. Lethaia, 25:401420.CrossRefGoogle Scholar
Bengtson, S., and Missarzhevsky, V. V. 1981. Coeloscleritophora—a major group of enigmatic Cambrian metazoans. U.S. Geological Survey Open-file Report, 81-743:1921.Google Scholar
Bengtson, S., Conway Morris, S., Cooper, B. J., Jell, P. A., and Runnegar, B. N. 1990. Early Cambrian fossils from South Australia. Association of Australasian Palaeontologists Memoirs, 9:1364.Google Scholar
Brasier, M. D. 1989. Towards a biostratigraphy of the earliest skeletal biotas, p. 117165. In Cowie, J. W. and Brasier, M. D. (eds.). The Precambrian-Cambrian Boundary. Clarendon Press, Oxford.Google Scholar
Briggs, D. E. G., Erwin, D. H., and Collier, F. J. 1994. The Fossils of the Burgess Shale. Smithsonian Institution Press, Washington, 238 p.Google Scholar
Brock, G. A., and Cooper, B. J. 1993. Shelly fossils from the Early Cambrian (Toyonian) Wirrealpa, Aroona Creek, and Ramsay limestones of South Australia. Journal of Paleontology, 67:758787.CrossRefGoogle Scholar
Butterfield, N. J. 1990. A reassessment of the enigmatic Burgess Shale fossil Wiwaxia corrugata (Matthew) and its relationship to the polychaete Canadia spinosa Walcott. Paleobiology, 16:287303.CrossRefGoogle Scholar
Butterfield, N. J., and Nicholas, C. J. 1996. Burgess Shale-type preservation of both non-mineralizing and “shelly” Cambrian organisms from the Mackenzie Mountains, northwestern Canada. Journal of Paleontology, 70:893899.CrossRefGoogle Scholar
Chen, J.-Y., and Zhou, G.-Q. 1997. Biology of the Chengjiang fauna. Taiwan National Museum of Natural Science Bulletin, 10:11105.Google Scholar
Chen, J.-Y., Zhou, G.-Q., Zhu, M.-Y., and Yeh, K. 1996. The Chengjiang Biota—A Unique Window of the Cambrian Explosion. Taiwan National Museum of Natural Science, Taichung, 222 p. (In Chinese)Google Scholar
Conway Morris, S. 1998. The Crucible of Creation. Oxford University Press, Oxford, 242 p.Google Scholar
Deiss, C. 1938. Cambrian formations and sections in part of the Cordilleran trough. Geological Society of America Bulletin, 49:10671168.CrossRefGoogle Scholar
Ding, L.-F., Zhang, L.-Y., Li, Y., and Dong, J.-S. 1992. The Study of the Late Sinian-Early Cambrian Biota from the Northern Margin of the Yangtze Platform. Scientific and Technical Documents Publishing House, 156 p. (In Chinese with English summary)Google Scholar
Doré, F., and Reid, R. E. H. 1965. Allonnia tripodophora nov. gen., nov. sp., nouvelle éponge du Cambrien inférieur de Carteret (Manche). Comptes Rendus Sommaires Séances Société Géologique de la France, 1965:2021.Google Scholar
Elrick, M., and Hinnov, L. A. 1996. Millennial-scale climate origins for stratification in Cambrian and Devonian deep-water rhythmites, western USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 123:353372.CrossRefGoogle Scholar
Fuchs, G., and Mostler, H. 1972. Der erste Nachweis von Fossilien (kambrischen Alters) in der Hazira-Formation, Hazara, Pakistan. Geologische, Paläontologische Mitteilungen der Universität Innsbruck, 2:112.Google Scholar
Goryansky, V. Y. 1973. On the necessity of excluding the genus Chancelloria Walcott from the phylum Porifera. Trudy Institut Geologii i Geofiziki So AN SSSR, 49:3944. (In Russian)Google Scholar
Gunther, L. F., and Gunther, V. G. 1981. Some Middle Cambrian fossils of Utah. Bringham Young University Geology Studies, 28:182.Google Scholar
Hou, X., Bergström, J., Wang, H., Feng, X., and Chen, A. 1999. The Chengjiang Fauna. Yunnan Science and Technology Press, 170 p. (In Chinese with English abstract)Google Scholar
James, N. P., and Clappa, C. F. 1983. Petrogenesis of Early Cambrian reef limestones, Labrador, Canada. Journal of Sedimentary Petrology, 53:10511096.Google Scholar
Li, C., Chen, J., and Hua, T. 1998. Precambrian sponges with cellular structures. Nature, 279:879882.Google ScholarPubMed
Li, G.-X. 1999. Early Cambrian chancellorids from Emei, Sichuan Province, SW China. Acta Palaeontologica Sinica, 38:238247.Google Scholar
Luo, H., Jiang, Z., Wu, X., Song, X., and Ouyang, L. 1982. The Sinian-Cambrian Boundary in Eastern Yunnan, China. Yunnan Institute of Geological Sciences, PR. China, 265 p. (In Chinese with English abstract)Google Scholar
Mehl, D. 1996. Organization and microstructure of the chancellorid skeleton: Implications for the biomineralization of the Chancelloridae. Bulletin de 1'Institut océanographique de Monaco, no. spécial 14(4):377385.Google Scholar
Mehl, D. 1998. Porifera and Chancelloridae from the Middle Cambrian of the Georgina Basin, Australia. Palaeontology, 41:11531182.Google Scholar
Mehl, D., and Reitner, J. 1991. Monophylie und Systematik der Porifera. Verhandlungen der Deutschen Zoologischen Gesellschaft, 1991:447.Google Scholar
Mehl-Janussen, D. 1999. Die frühe Evolution der Porifera. Münchner Geowissenschaftliche Abhandlungen, Reihe A, 37:172.Google Scholar
Mostler, H. 1980. Zur Mikrofauna des Unterkambriums in der Haziraformation—Hazara, Pakistan. Naturhistorisches Museum Wien Annalen, 83:245257.Google Scholar
Mostler, H. 1995. Neue heteractinide Spongien (Calcispongea) aus dem Unter- und Mittelkambrium. Naturwissenschaftlich-medizinischer Verein Innsbruck Berichte, 72:732.Google Scholar
Mostler, H., and Mosleh-Yazdi, A. 1976. Neue Poriferen aus oberkambrischen Gesteinen der Milaformation im Elburzgebirge (Iran). Geologische, Paläontologische Mitteilungen der Universität Innsbruck, 5:136.Google Scholar
Müller, F. 1865. Über Darwinella aurea, einen Schwamm mit sternförmigen Hornnadeln. Archiv für Mikroskopische Anatomie, 1:343453.CrossRefGoogle Scholar
Pickett, J. 1982. Vacaletia progenitor, the first Tertiary sphinctozoan (Porifera). Alcheringa, 6:241247.CrossRefGoogle Scholar
Qian, Y. 1977. Hyolitha and some prpblematica from the Lower Cambrian Huangshandong Formation in the eastern part of the Yangtze Gorge. Acta Palaeontologica Sinica, 2:255278. (In Chinese with English abstract)Google Scholar
Qian, Y. 1989. Stratigraphy and Palaeontology of Systemic Boundaries in China, Precambrian-Cambrian Boundary 2. Nanjing University Publishing House, Nanjing, 341 p.Google Scholar
Qian, Y., and Bengtson, S. 1989. Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils and Strata, 24:1156.Google Scholar
Qian, Y., Chen, M.-E., He, T., Zhu, M.-Y., Yin, G-Z., Feng, W-M., Xu, J.-T., Jiang, Z.-W., Liu, D.-Y., Liu, G., Xiao, B., Ding, L.-F., and Mao, Y.-Q. 1999. Taxonomy and biostratigraphy of small shelly fossils in China. Science Press, Beijing, 247 p.Google Scholar
Rees, M. N., and Robison, R. A. 1989. Cambrian stratigraphy and paleontology of the central House Range and Drum Mountains, Utah, p. 5986. In Taylor, M. E. (ed.), Cambrian and Early Ordovician Stratigraphy and Paleontology of the Basin and Range Province, Western United States. Field Trip Guidebook T125, 28th International Geologic Congress.CrossRefGoogle Scholar
Reid, R. E. H. 1959. Occurrence of Chancelloria Walcott in the Comley limestone. Geological Magazine, 96:261262.CrossRefGoogle Scholar
Reitner, J., and Mehl, D. 1996. Monophyly of the Porifera. Verhandlungen des naturwissenschaftlichen Vereins in Hamburg (Neue Folge), 36:532.Google Scholar
Reitner, J., Wörheide, G., Lange, R., and Thiel, V. 1997. Biomineralization of calcified skeletons in three Pacific coralline demosponges—an approach to the evolution of basal skeletons. Courier Forschungsinstitut Senckenberg, 201:371383.Google Scholar
Rigby, J. K. 1966. Protospongia hicksi Hinde from the Middle Cambrian of western Utah. Journal of Paleontology, 40:549554.Google Scholar
Rigby, J. K. 1969. A new Middle Cambrian hexactinellid sponge of western Utah. Journal of Paleontology, 43:125128.Google Scholar
Rigby, J. K. 1978. Porifera of the Middle Cambrian Wheeler Shale from the Wheeler Amphitheater, House Range, in western Utah. Journal of Paleontology, 52:13251345.Google Scholar
Rigby, J. K. 1986. Sponges of the Burgess Shale (Middle Cambrian), British Columbia. Paleontographica Canadiana, 2:1105.Google Scholar
Rigby, J. K. 1990. A new Middle Cambrian hexactinellid, Ratcliffespongia wheeled from western Utah, and skeletal structure of Ratcliffespongia . Journal of Paleontology, 64:331334.CrossRefGoogle Scholar
Robison, R. A. 1960. Lower and Middle Cambrian stratigraphy of the Eastern Great Basin. Intermountain Association of Petroleum Geologists 11th Annual Field Conference, p. 4352.Google Scholar
Robison, R. A. 1964a. Late Middle Cambrian faunas from western Utah. Journal of Paleontology, 38:510566.Google Scholar
Robison, R. A. 1964b. Upper Middle Cambrian stratigraphy of western Utah. Geological Society of America Bulletin, 75:9951010.CrossRefGoogle Scholar
Robison, R. A. 1991. Middle Cambrian biotic diversity: examples from four Utah Lagerstätten, p. 7793. In Simonetta, A. M. and Conway Morris, S. (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press.Google Scholar
Sdzuy, K. 1969. Unter- und mittelkambrische Porifera (Chancellorida und Hexactinellida). Paläontologische Zeitschrift, 43:115147.CrossRefGoogle Scholar
Shergold, J. H., and Southgate, P. N. 1986. Middle Cambrian phosphatic and calcareous lithofacies along the eastern margin of the Georgina Basin, Western Queensland. Australasian Sedimentologists Group Field Guide Series, 2:189.Google Scholar
Siegmund, H. 1995. Fazies und Genese unterkambrischer Phosphorite und mariner Sedimente der Yangtze-Plattform, Südchina. Berliner Geowissenschaftliche Abhandlungen, Reihe A, 173:1114.Google Scholar
Simpson, T. L. 1984. The Cell Biology of Sponges. Springer, New York, 662 p.CrossRefGoogle Scholar
Soest, R. W. M. van. 1991. Demosponge higher taxa classification reexaminated, p. 5471. In Reitner, J. and Keupp, H. (eds.), Fossil and Recent Sponges. Springer, Berlin.CrossRefGoogle Scholar
Walcott, C. D. 1908a. Nomenclature of some Cambrian Cordilleran formations. Smithsonian Miscellaneous Collections, 53(1):112.Google Scholar
Walcott, C. D. 1908b. Cambrian sections of the Cordilleran area. Smithsonian Miscellaneous Collections, 53(5):167230.Google Scholar
Walcott, C. D. 1911. Cambrian geology and paleontology, Middle Cambrian annelids. Smithsonian Miscellaneous Collections, 57(5):109145.Google Scholar
Walcott, C. D. 1920. Middle Cambrian Spongiae. Smithsonian Miscellaneous Collections, 67:261364.Google Scholar
Wheeler, H. E. 1948. Late Precambrian-Cambrian stratigraphic cross-section through southern Nevada. University of Nevada Geological and Mineralogical Series Bulletin, 47:158.Google Scholar
Yochelson, E. 1993. Molluscan affinity of coeloscleritophorans. Lethaia, 26:4748.CrossRefGoogle Scholar
Zhao, Y.-L., Yuan, J.-L., Zhu, M.-Y., Yang, R.-D., Qian, Y., Huang, Y-Z., Guo, Q.-J., and Pan, Y. 1999. A progress report on research on the early Middle Cambrian Kaili biota, Guizhou Province, PRC. Acta Palaeontological Sinica, 38, supl.:114. (In Chinese with English abstract)Google Scholar
Zhu, M.-Y. 1992. Taphonomy of Chengjiang fossils, Yunnan. Dissertation, Nanjing Institute of Geology and Palaeontology, Academia Sinica, Nanjing, 136 p. (In Chinese)Google Scholar
Zhu, M.-Y., Qian, Y., Jiang, Z.-W., and He, T.-G. 1996. A preliminary study on the preservation, shell composition and microstructures of Cambrian small shelly fossils. Acta Micropalaeontologica Sinica, 13(3):241254.Google Scholar