Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T12:05:59.191Z Has data issue: false hasContentIssue false

Phylogeny of the Late Jurassic-Early Cretaceous subgenus Eselaevitrigonia (bivalvia) of Kutch, India, and paleobiogeographic constraints

Published online by Cambridge University Press:  14 July 2015

Purbasha Rudra
Affiliation:
Department of Geological Sciences, Jadavpur University, Kolkata 700032, India
Subhendu Bardhan
Affiliation:
Department of Geological Sciences, Jadavpur University, Kolkata 700032, India
Sabyasachi Shome
Affiliation:
Geological Survey of India, Kolkata 700016, India

Abstract

Three of Kitchin's (1903) trigoniid species, Trigonia trapeziformis, T. spissicostata, and T. cardiniiformis, have been frequently examined taxonomically, but their phylogenetic relationships remain uncertain. Taxonomic designations have ranged from grouping them within a single subgenus to separating them into different subfamilies. Principal factors affecting the previous studies include: excessive weighing of certain features from a typological perspective; phylogenetic relationships established on the basis of plesiomorphic characters which are applicable even at the family level. Although they are endemic to Kutch, India, species' ancestries were rarely sought from the regional taxa, a situation exacerbated by inadequate stratigraphic information. This study reveals that all the three species are both geographically and stratigraphically distinct, and their distribution is linked to major regression events. Since the latest Jurassic, the Kutch Basin experienced shallowing. The unstable environment triggered a substantial diversification of new forms. The present species are close morphologically to some endemic species of different genera. Detailed morphologic, morphometric, and cladistic analyses reveal affinities between ‘Eselaevitrigonia’ trapeziformis and Indotrigonia smeei, as well as ‘E.’ spissicostata and Opisthotrigonia retrorsa. It is believed that E. cardiniiformis evolved from ‘E.’ spissicostata. In each case, speciation took place in a very shallow, high-energy, nearshore environment and proceeded through various heterochronic processes. The pattern is consistent with a punctuated model of evolution. Gondwana fragmentation and rise of eustatic sea level during the Aptian opened up the central Indian oceanic corridor, prompting the spread of ‘Eselaevitrigonia’ to the Austral Province.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, W. G. 1961. Geology and palaeontology of the Jurassic and Cretaceous of southern Tanganyika including an account of new Trigoniidae. Bulletin of the Geological Survey of Tanganyika, 31,1144.Google Scholar
Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. 1979. Size and shape in ontogeny and phylogeny. Paleobiology, 5:297317.Google Scholar
Arkell, W. J. 1956. Jurassic geology of the world. Oliver and Boyd, Edinburgh and London, 806 p.Google Scholar
Bardhan, S., Shome, S., Bose, P. K., and Ghosh, G. 1989. Faunal crisis and marine regression across the Jurassic-Cretaceous boundary in Kutch, India. Mesozoic Research, 21(1):110.Google Scholar
Benton, M. J. 1990. Vertebrate Paleontology: Biology and evolution. Harper Collins Academic, London, 377 p.Google Scholar
Biswas, S. K. 1977. Mesozoic rock stratigraphy of Kutch. The Quarterly Journal of the Geological, Mining and Metallurgical Society of India, 49(3 & 4):152.Google Scholar
Biswas, S. K. 1991. Stratigraphy and sedimentary evolution of the Mesozoic basin of Kutch, Western India, p. 74103. In Tandon, S. K., Pant, C. C., and Casshyap, S. M. (eds.), Sedimentary Basins of India: Tectonic Concept. Gyanodaya Prakashan, Nainital.Google Scholar
Bose, P. K., Shome, S., Bardhan, S., and Ghosh, G. 1986. Facies mosaic in the Ghuneri Member (Jurassic) of Bhuj Formation, Western Kutch, India. Sedimentary Geology, 46:293309.Google Scholar
Boyd, D. W. and Newell, N. D. 1972. Taphonomy and diagenesis of a Permian fossil assemblage from Wyoming. Journal of Paleontology, 46:114.Google Scholar
Bremer, K. 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution, 42:795803.CrossRefGoogle ScholarPubMed
Bruguiere, J. G. 1789. Encyclopédie méthodique, Paris, Volume 1, plates 237238. (In French) Google Scholar
Callomon, J. H. 1985. The evolution of the Jurassic ammonite family Cardioceratidae. Palaeontology Special Papers, 33:4990.Google Scholar
Chatterjee, S. and Small, B. J. 1989. New plesiosaurs from the Upper Cretaceous of Antarctica, p. 197215. In Crame, J. A. (ed.), Origins and Evolution of the Antarctic Biota. Geological Society Special Publications.Google Scholar
Chatterjee, S. and Scotese, C. R. 1999. The breakup of Gondwana and the evolution and biogeography of the Indian Plate. Proceedings of the Indian National Science Academy, Pt. A, 65(3):397425.Google Scholar
Cooper, M. R. 1991. Lower Cretaceous Trigonioida (Mollusca, Bivalvia) from the Algoa Basin, with a revised classification of the order. Annals of the South African Museum, 100(1):152.Google Scholar
Cox, L. R. 1952. The Jurassic fauna of Cutch (Kachh). No. 3, families Pectinidae, Amusiidae, Plicatuliidae, Limiidae, Ostreidae and Trigoniidae (Supplement). Memoirs of the Geological Survey of India, Palaeontologia Indica, series 9, 3(4):1128.Google Scholar
Cox, L. R. 1963. New genera and subgenera of trigoniidae from Australia and Madagascar. Proceedings of the Malacological Society of London, 36(49):4952.Google Scholar
Cox, L. R. 1965. Jurassic Bivalvia and Gastropoda from Tanganyika and Kenya. Bulletin of the British Museum of Natural History (Geology), supplement 1:1213.Google Scholar
Cox, L. R. 1969. Family Trigoniidae Lamarck, 1819, p. N476N488. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, P. N, Volume 1, Mollusca 6, Bivalvia. Geological Society of America and the University of Kansas Press, Lawrence.Google Scholar
Dall, W. H. 1889. On the hinge of pelecypods and its development, with an attempt toward a better subdivision of the group. American Journal of Science, 38(3):445462.Google Scholar
Das, S. S. 2002. Two pleurotomariid (Gastropoda) species, including the largest Bathrotomaria, from the Berriasian (Early Cretaceous) of Kutch, western India. Cretaceous Research, 23:99109.CrossRefGoogle Scholar
Datta, K. 1992. Facies, fauna and sequence: An integrated approach in the Jurassic Patcham and Chari formations, Kutch, India. Unpublished Ph.D. dissertation, Jadavpur University, Calcutta, India, 167 p.Google Scholar
Deshpande, S. V. and Merh, S. S. 1980. Mesozoic sedimentary model of Wagad Hills, Kutch, Western India. Journal of the Geological Society of India, 21:7583.Google Scholar
Dietrich, W. O. 1933. Zur Stratigraphie und Palaeontologie der Tendaguruschichten. Palaeontographica Supplement, 7(1), 2:186. (In German) Google Scholar
Dommergues, J. L. 1990. Ammonoids, p. 162187. In McNamara, K. J. (ed.), Evolutionary Trends. Belhaven Press, London.Google Scholar
Eldredge, N. 1974. Character displacement in evolutionary time. American Zoologist, 14:10831097.CrossRefGoogle Scholar
Eldredge, N. and Cracraft, J. 1980. Method and Theory in Comparative Biology. Columbia University Press, New York, 349 p.Google Scholar
Eldredge, N. and Gould, S. J. 1972. Punctuated equilibria: An alternative to phyletic gradualism, p. 82115. In Schopf, T. J. M. (ed.), Models in Paleobiology. Freeman, Cooper, San Francisco.Google Scholar
Fleming, C. A. 1987. New Zealand Mesozoic bivalves of the superfamily Trigoniacea. New Zealand Geological Survey, Palaeontological Bulletin, 53:1104.Google Scholar
Fontannes, F. 1879. Description des ammonites des calcaires du Château de Crussol, Ardèche (zones à Oppelia tenuilobata et Waagenia beckeri): 1122. (In French) Google Scholar
Fürsich, F. T. and Heinze, M. 1998. Contributions to the Jurassic of Kachchh, western India, VI, the bivalve fauna, Pt. III, Subclass Palaeoheterodonta (Order Trigonioida). Beringeria, 21:151168.Google Scholar
Fürsich, F. T. and Oschmann, W. 1993. Shell beds as tools in basin analysis: The Jurassic of Kachchh, Western India. Journal of the Geological Society, London, 150:169185.Google Scholar
Fürsich, F. T., Heinze, M., and Jaitly, A. K. 2000. Contributions to the Jurassic of Kutch, western India, VIII, The bivalve fauna, Pt. IV, Subclass Heterodonta. Beringeria, 27:63146.Google Scholar
Fürsich, F. T., Oschmann, W., Jaitly, A. K., and Singh, I. B. 1991. Faunal response to transgressive-regressive cycles: Example from the Jurassic of western India. Palaeogeography, Palaeoclimatology, Palaeoecology, 85:149159.Google Scholar
Gould, S. J. and Eldredge, N. 1977. Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology, 3:115151.Google Scholar
Gould, S. J. and Eldredge, N. 1993. Punctuated equilibrium comes of age. Nature, 366:223227.Google Scholar
Hallam, A. and Wignall, P. B. 1997. Mass extinctions and their aftermath. Oxford University Press, United Kingdom, 319 p.Google Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1987. Chronology of fluctuating sea-levels since the Triassic. Science, 235:11561166.Google Scholar
Holdhaus, K. 1913. Fauna of the Spiti shales (Lamellibranchiata and Gastropoda). Memoirs of the Geological Survey of India, Palaeontologia Indica Series 15, 4(2):397456.Google Scholar
Hyatt, A. 1900. Cephalopoda, p. 502592, fig. 1049–1235. In Zittel, K. A. (ed.), Textbook of Palaeontology. Macmillan Publishers, London and New York.Google Scholar
Jablonski, D., Flessa, K. W., and Valentine, J. W. 1985. Biogeography and paleobiology. Paleobiology, 11:7590.Google Scholar
Jones, D. S. and Gould, S. J. 1999. Direct measurement of age in fossil Gryphaea: The solution to a classic problem in heterochrony. Paleobiology, 25:158187.Google Scholar
Kauffman, E. G., 1972. Ptychodus predation upon a Cretaceous Inoceramus . Palaeontology, 15:439444.Google Scholar
Kauffman, E. G. and Kesling, R. V. 1960. An upper Cretaceous ammonite bitten by a Mosasaur. Contributions to the Museum of Paleontology of the University of Michigan, 15:193248.Google Scholar
Kelly, S. R. A. 1995. New trigonioid bivalves from the Albian (Early Cretaceous) of Alexander Island, Antarctic Peninsula: Systematics, paleoecology, and Austral Cretaceous paleobiogeography. Journal of Paleontology, 69(2):264279.Google Scholar
Kelly, S. R. A. 1996. The austral palaeobiogeography of an Early Cretaceous (Albian) trigoniid bivalve assemblage from the upper part of the Fossil Bluff Group, Alexander Island, Antarctica, p. 129139. In Spaeth, C. (ed.), Fourth International Cretaceous Symposium, Hamburg.Google Scholar
Kitchin, F. L. 1903. The Jurassic fauna of Cutch, the Lamellibranchiata; No. 1, Genus Trigonia . Memoirs of the Geological Survey of India, Palaeontologia Indica, series 9, 3(2):1122.Google Scholar
Kobayashi, T. 1954. Studies on the Jurassic trigonians in Japan, Pt. I, Preliminary notes. Japanese Journal of Geology and Geography, 15(1/2):6180.Google Scholar
Kobayashi, T., and Mori, K. 1954. Studies on the Jurassic trigonians in Japan, Pt. II, Prosogyrotrigonia and the Trigoniinae. Japanese Journal of Geology and Geography, 25:155175.Google Scholar
Krauss, F. 1842. Uber die geologie Verhälten der öst Kuste des Caplandes. Officieller Bericht der Allgemeine Versammlung deutscher Naturforscher:1130.Google Scholar
Krishna, J. 1991. Discovery of Lower Berriasian (Lower Cretaceous) ammonoid genus Argentiniceras from Kachchh (India) and its relevance to Jurassic/Cretaceous boundary. Newsletters on Stratigraphy, 23:141150.Google Scholar
Krishna, J. and Pathak, D. B. 1991. Ammonoid biochronology of the Upper Jurassic Kimmeridgian stage in Kachchh, India. Journal of the Palaeontological Society of India, 36:113.Google Scholar
Krishna, J., Pathak, D. B., and Pandey, B. 1998. Development of Oxfordian (Early Upper Jurassic) in the most proximally exposed part of the Kachchh basin at Wagad outside the Kachchh mainland. Journal of the Geological Society of India, 52:513522.Google Scholar
Lamarck, J. B. de. 1819. Histoire Naturelle des Animaux sans Vertèbres, 6(1). Verdiere, Paris, 343 p.Google Scholar
Lebkuchner, R. 1932. Die trigonien des süddeutschen Jura. Palaeontographica, 77:1119.Google Scholar
Marwick, J. 1932. A new Trigonia from Canterbury. Records of the Canterbury Museum, 3:505509.Google Scholar
Mayr, E. 1963. Animal species and evolution. Harvard University Press, Cambridge, Massachusetts, 797 p.Google Scholar
McKinney, M. L. 1988. Classifying heterochrony: allometry size, and time, p. 1734. In McKinney, M. L. (ed.), Heterochrony in evolution: a multidisciplinary approach. Plenum, New York.Google Scholar
McNamara, K. J. 1990a. The role of heterochrony in evolutionary trends, p. 5974. In McNamara, K. J. (ed.), Evolutionary Trends. Belhaven Press, London.Google Scholar
McNamara, K. J. 1990b. Echinoids, p. 205231. In McNamara, K. J. (ed.), Evolutionary Trends. Belhaven Press, London.Google Scholar
Mitra, K. C., Bardhan, S., and Bhattacharya, D. 1979. A study of Mesozoic stratigraphy of Kutch, Gujarat, with special reference to rock-stratigraphy and biostratigraphy of Keera Dome. Bulletin of Indian Geologists' Association, 12:129144.Google Scholar
Monks, N. 2000. Functional morphology, ecology, and evolution of the Scaphitaceae Gill, 1871 (Cephalopoda). Journal of Molluscan Studies, 66:205216.Google Scholar
Moore, C. 1870. Australian Mesozoic geology and palaeontology. Quarterly Journal of the Geological Society of London, XXVII:226261.Google Scholar
Müller, G. 1900. Versteinerungen des Jura und der Kriede Deutsch-Ost-Africa, Bd VII, Dietrich Reimer, Berlin.Google Scholar
Nakano, M. 1961. On the Trigoniinae. Journal of Science of the Hiroshima University, 4(1):7194.Google Scholar
Newell, N. D. and Boyd, D. W. 1975. Parallel evolution in early trigoniacian bivalves. Bulletin of the American Museum of Natural History, 154:53162.Google Scholar
Newell, N. D. 1978. A paleontologists view of bivalve phylogeny. Philosophical Transcations of the Royal Scoiety of London, 284:203215.Google Scholar
Orbigny, A. 1840–1842. Paléontologie française. Terrains crétacés I. Cephalopodes, Masson, Paris, 662 p.Google Scholar
Pascoe, E. H. 1959. A manual of geology of India and Burma, Volume II: 4851219.Google Scholar
Rajnath, . 1932. A contribution to the stratigraphy of Cutch. Quarterly Journal of the Geological, Mineralogical and Metallurgical Society of India, 4(4):161174.Google Scholar
Romer, A. S. 1966. Verterate Paleontology. University of Chicago Press, Chicago, 468 p.Google Scholar
Sahni, M. R. and Prasad, K. N. 1957. On a new species of Astarte from the Umia Beds of Ghuneri, Cutch, Western India and remarks on the age of the Trigonia Beds. Records of the Geological Survey of India, 84(4):431438.Google Scholar
Saveliev, A. A. 1958. The Lower Cretaceous trigoniids of Mangyschlak and western Turkmenia. Trudy Vsesoyuznogo Neftyanogo-Issledovatel'skogo Geologicheskikh Institut, 125:1516. (In Russian) Google Scholar
Schindel, D. A. and Gould, S. J. 1977. Biological interaction between fossil species: Character displacement in Bermudian land snails. Paleobiology, 3:259269.Google Scholar
Seilacher, A. 1972. Divaricate patterns in pelecypod shells. Lethaia, 5:325343.Google Scholar
Seilacher, A. 1973. Fabricational noise in adaptive morphology. Systematic Zoology, 22:451465.Google Scholar
Shea, B. T. 1983. Allometry and heterochrony in the African apes. American Journal of Physical Anthropology, 62:275289.Google Scholar
Shome, S. and Bardhan, S. 2005. Record of new species of Erymnoceras Hyatt, 1900 (Ammonoidea) from the Middle Jurassic of Eastern Kutch, India and its stratigraphic and evolutionary significance. Journal of Asian Earth Sciences, 25:679685.Google Scholar
Shome, S., De, S., Roy, P., and Das, S. S. 2004. Ammonites as biological stopwatch and biogeographical black box—a case study from the Jurassic-Cretaceous boundary (150 Ma) of Kutch, Gujarat. Current Science, 86(1):197201.Google Scholar
Shukla, U. K. and Singh, I. B. 1993. First record of marine macroinvertebrate from Bhuj Sandstone (Lower Cretaceous) of eastern Kachchh. Current Science, 65(2): 171174.Google Scholar
Skwarko, S. K., 1963. Australian Mesozoic trigoniids. Bulletin of the Bureau of Mineral Resources, Geology and Geophysics, 67:154.Google Scholar
Skwarko, S. K. 1981. A new upper Mesozoic trigoniid from western Papua New Guinea. Bulletin of the Bureau of Mineral Resources, Geology and Geophysics, 209:5758.Google Scholar
Smith, A. G., Smith, D. G., and Funnel, B. M. 1994. Atlas of Mesozoic and Cenozoic coastlines. Cambridge University Press, Cambridge.Google Scholar
Sowerby, J. de C. 1812–1822. The mineral conchology of Great Britain, London: 165.Google Scholar
Sowerby, J. de C. 1840. In Col. Sykes, W. H. A Notice representing some fossils collected in Kutch by Capt. W. Smeei. Transaction of the Geological Society London, series 2(5):715718.Google Scholar
Spath, L. F. 1924. On the Blake collection of ammonites from Kachh (India). Palaeontologia Indica, Series 9, 1:1129.Google Scholar
Spath, L. F. 1927–1933. Revision of the Jurassic cephalopod fauna of Kachh (Cutch). Memoirs of the Geological Survey of India, Palaeontologia Indica, series 9, 1–6:1945.Google Scholar
Stanley, S. M. 1970. Relation of shell form to life habits of the Bivalvia (Mollusca). The Geological Society of America, Memoir, 125:1296.Google Scholar
Stanley, S. M. 1977. Coadaptation in the Trigoniidae, a remarkable family of burrowing bivalves. Palaeontology, 20(4):869899.Google Scholar
Swofford, D. L. 1998. PAUP: Phylogenetic Analysis Using Parsimony, Version beta 8. Smithsonian Institute (computer software).Google Scholar
Thurmond, J. T. 1974. Lower vertebrate faunas of the Trinity division in north-central Texas. Geoscience and Man, 8:103129.Google Scholar
Van Hoepen, E. C. N. 1929. Die krytfauna van Soeloeland, 1, Trigoniidae. Paleontologiese Navorsing van die Nasionale Museum van Bloemfontein, 1(1):138.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: Evidence from snails, predators and grazers. Paleobiology, 3:245258.Google Scholar
Vermeij, G. J. 1983. Traces and trends of predation, with special reference to bivalved animals. Palaeontology, 26(3):455465.Google Scholar
Waagen, W. 1875. Jurassic fauna of Cutch. Memoirs of the Geological Survey of India, Palaeontologia Indica, series 9, 1:1247.Google Scholar
Waagen, W. 1907. Die Lamellibranchiaten der Pachycardientuffe der Seiser Alm. Abh. K. k. Geol. Reichsanst, 18(2):180.Google Scholar
Woods, H. 1917. The Cretaceous faunas of the north-eastern part of the South Island of New Zealand. New Zealand Geological Survey, Palaeontological Bulletin, 4:141.Google Scholar
Wright, C. W., Callomon, J. H., and Howarth, M. K. 1996. Treatise on Invertebrate Paleontology, Pt. L, Mollusca 4 revised: Cretaceous Ammonoidea. The Geological Society of America and the University of Kansas, Lawrence, Kansas.Google Scholar
Wynne, A. B. 1872. Memoir on the Geology of Kutch. Memoirs of the Geological Survey of India, 9(2):1289.Google Scholar