Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T11:30:31.110Z Has data issue: false hasContentIssue false

Silurian microbial associations from the Alexander terrane, Alaska

Published online by Cambridge University Press:  20 May 2016

Robert Riding
Affiliation:
Department of Geology, University of Wales College of Cardiff, Cardiff CF1 3YE, U.K.

Abstract

Silurian calcareous algae, cyanobacteria, and microproblematica are abundantly preserved in the Alexander terrane of southeastern Alaska. They represent a diverse population of calcified microbes that contributed to the formation of a variety of shallow- and deep-water carbonate deposits. Five associations are recognized on the basis of recurring groups of microbial taxa. These include a Girvanella-Tuxekanella association that formed oncoids and thick encrustations on skeletal grains in shelf environments. A Renalcis association predominated in a stromatoporoid-coral reef that developed at the incipient shelf margin on a crinoid-solenoporid shoal (“Solenopora” association). Other organic buildups are characterized by a Ludlovia association, which constructed skeletal stromatolite reefs, and by an Epiphyton-Sphaerina association that contributed to the formation of a stromatolitic mud mound. A mixed microbial assemblage reflects transport and mixing of shallow-water microbial biotas that were deposited by turbidity currents, debris flows, and slumps in a slope environment.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bourque, P.-A., and Amyot, G. 1988. Stromatoporoid-coral reefs of the upper West Point reef complex, Late Silurian, Gaspe Peninsula, Quebec, p.251257. In Geldsetzer, H. H. J., James, N. P., and Tebbutt, G. E. (eds.), Reefs, Canada and Adjacent Areas. Canadian Society of Petroleum Geologists, Memoir 13.Google Scholar
Brooke, C. M. 1986. Calcareous algae and algal limestones from the Silurian of Gotland, Sweden. Unpubl. , , Cardiff, 247 p.Google Scholar
Brown, P. R. 1963. Some algae from the Swan Hills reef. Bulletin Canadian Petroleum Geology, 11:178182.Google Scholar
Chuvashov, B., and Riding, R. 1984. Principal floras of Palaeozoic marine calcareous algae. Palaeontology, 27:487500.Google Scholar
Clough, J. G., and Blodgett, R. B. 1988. Silurian–Devonian algal reef mound complex of southwest Alaska, p. 404407. In Geldsetzer, H. H. J., James, N. P., and Tebbutt, G. E. (eds.), Reefs, Canada and Adjacent Areas. Canadian Society of Petroleum Geologists, Memoir 13.Google Scholar
Copper, P. 1976. The cyanophyte Wetheredella in Ordovician reefs and off-reef sediments. Lethaia, 9:273281.CrossRefGoogle Scholar
Copper, P. 1988. Upper Ordovician and Lower Silurian reefs of Anticosti Island, Quebec, p. 271276. In Geldsetzer, H. H. J., James, N. P., and Tebbutt, G. E. (eds.), Reefs, Canada and Adjacent Areas. Canadian Society of Petroleum Geologists, Memoir 13.Google Scholar
Desrochers, A., and Bourque, P.-A. 1988. Lower Silurian biostromes and bioherms of southern Gaspe, Quebec Appalachians, p. 299303. In Geldsetzer, H. H. J., James, N. P., and Tebbutt, G. E. (eds.), Reefs, Canada and Adjacent Areas. Canadian Society of Petroleum Geologists, Memoir 13.Google Scholar
Eberlein, G. D., Churkin, M. Jr., Carter, C., Berg, H. C., and Ovenshine, A. T. 1983. Geology of the Craig quadrangle, Alaska. U.S. Geological Survey Open-File Report, 83–91, 28 p.Google Scholar
Flügel, E. 1977. Environmental models for upper Paleozoic benthic calcareous algal communities, p. 314343. In Flügel, E. (ed.), Fossil Algae: Recent Results and Developments. Springer-Verlag, New York.Google Scholar
Gehrels, G. E., and Saleeby, J. B. 1987. Geologic framework, tectonic evolution, and displacement history of the Alexander terrane. Tectonics, 6:151173.Google Scholar
Harland, T. L. 1981. Middle Ordovician reefs of Norway. Lethaia, 14:169188.CrossRefGoogle Scholar
Johnson, R. E., and Sheehan, P. M. 1985. Late Ordovician dasyclad algae of the eastern Great Basin, p. 7984. In Toomey, D. F. and Nitecki, M. H. (eds.), Paleoalgology: Contemporary Research and Applications. Springer-Verlag, New York.CrossRefGoogle Scholar
Kauffman, E. G., and Scott, R. W. 1976. Basic concepts of community ecology and paleoecology, p. 128. In Scott, R. W. and West, R. R. (eds.), Structure and Classification of Paleocommunities. Dowden, Hutchinson and Ross, Inc., Stroudsburg, Pennsylvania.Google Scholar
Kidwell, S. M., and Bosence, D. W. J. 1991. Taphonomy and time-averaging of marine shelly faunas, p. 115209. In Allison, P. A. and Briggs, D. E. G. (eds.), Taphonomy: Releasing the Data Locked in the Fossil Record. Plenum Press, New York.CrossRefGoogle Scholar
Kobluk, D. R., and James, N. P. 1979. Cavity-dwelling organisms in Lower Cambrian patch reefs from southern Labrador. Lethaia, 12:193218.Google Scholar
Korde, K. B. 1973. Cambrian algae. USSR Academy of Sciences, Transactions Palaeontological Institute, 139, 349 p. [in Russian].Google Scholar
Lauritzen, O., and Worsley, D. 1974. Algae as depth indicators in the Silurian of the Oslo region. Lethaia, 7:157161.Google Scholar
Lehmann, P. J., and Simo, A. 1988. Depositional facies and diagenesis of the Pipe Creek Jr. reef, Silurian, Great Lakes Region, Indiana, p. 319329. In Geldsetzer, H. H. J., James, N. P., and Tebbutt, G. E. (eds.), Reefs, Canada and Adjacent Areas. Canadian Society of Petroleum Geologists, Memoir 13.Google Scholar
Machielse, S. 1972. Devonian algae and their contribution to the western Canada sedimentary basin. Bulletin Canadian Petroleum Geology, 20:187237.Google Scholar
Mountjoy, E. W., and Riding, R. 1981. Foreslope stromatoporoidrenalcid bioherm with evidence of early cementation. Devonian Ancient Wall reef complex, Rocky Mountains. Sedimentology, 28:299319.Google Scholar
Ovenshine, A. T., and Webster, G. D. 1970. Age and stratigraphy of the Heceta Limestone in northern Sea Otter Sound, southeastern Alaska. U.S. Geological Survey Professional Paper, 700-C:170174.Google Scholar
Petryk, A. A., and Mamet, B. L. 1972. Lower Carboniferous algal microflora, southwestern Alberta. Canadian Journal of Earth Sciences, 9:767802.CrossRefGoogle Scholar
Pratt, B. 1984. Epiphyton and Renalcis—diagenetic microfossils from calcification of coccoid blue-green algae. Journal of Sedimentary Petrology, 54:948971.Google Scholar
Pratt, B., and James, N. P. 1988. Coral-Renalcis-thrombolite reef complex of Early Ordovician age, St. George Group, western Newfoundland, p. 224250. In Geldsetzer, H. H. J., James, N. P., and Tebbutt, G. E. (eds.), Reefs, Canada and Adjacent Areas. Canadian Society of Petroleum Geologists, Memoir 13.Google Scholar
Rees, M. N., Pratt, B. R., and Rowell, A. J. 1989. Early Cambrian reefs, reef complexes, and associated lithofacies of the Shackleton Limestone, Transantarctic Mountains. Sedimentology, 36:341361.CrossRefGoogle Scholar
Riding, R. 1977. Skeletal stromatolites, p. 5760. In Flügel, E. (ed.), Fossil Algae: Recent Results and Developments. Springer-Verlag, New York.Google Scholar
Riding, R. 1991a. Classification of microbial carbonates, p. 2151. In Riding, R. (ed.), Calcareous Algae and Stromatolites. Springer-Verlag, New York.CrossRefGoogle Scholar
Riding, R. 1991b. Calcified cyanobacteria, p. 5587. In Riding, R. (ed.), Calcareous Algae and Stromatolites. Springer-Verlag, New York.Google Scholar
Riding, R., and Soja, C. M. 1993. Silurian calcareous algae, cyanobacteria, and microproblematica from the Alexander terrane, Alaska. Journal of Paleontology, 67:710728.Google Scholar
Riding, R., and Toomey, D. F. 1972. The sedimentological role of Epiphyton and Renalcis in Lower Ordovician mounds, southern Oklahoma. Journal of Paleontology, 46:509519.Google Scholar
Riding, R., and Watts, N. 1981. Silurian algal reef crest in Gotland. Naturwissenschaften, 68:9192.Google Scholar
Riding, R., and Watts, N. 1983. Silurian Renalcis (?cyanophyte) from reef facies in Gotland (Sweden). Neues Jahrbuch für Geologie und Paläontologie, Monatschefte, 1983:242248.Google Scholar
Rothpletz, A. 1913. Über die Kalkalgen, spongiostromen und einige andere Fossilien aus dem Obersilur Gottlands. Sveriges Geologiska Undersokning Series C a, No. 10, 57 p.Google Scholar
Rowland, S. M., and Gangloff, R. A. 1988. Structure and paleoecology of Lower Cambrian reefs. Palaios, 3:111135.CrossRefGoogle Scholar
Samson, S. D., McClelland, W. C., Gehrels, G. E., and Patchett, P. 1988. The Alexander terrane, Nd and Sr isotopic evidence for a primitive magmatic history. Geological Society of America, Abstracts with Programs, 20:227.Google Scholar
Savage, N. M. 1985. Silurian (Llandovery–Wenlock) conodonts from the base of the Heceta Limestone, southeastern Alaska. Canadian Journal of Earth Sciences, 22:711727.Google Scholar
Soja, C. M. 1990. Island arc carbonates from the Silurian Heceta Formation, southeastern Alaska (Alexander terrane). Journal of Sedimentary Petrology, 60:235249.Google Scholar
Soja, C. M. 1991. Origin of Silurian reefs in the Alexander terrane of southeastern Alaska. Palaios, 6:111126.CrossRefGoogle Scholar
Tsien, H. H. 1979. Paleoecology of algal-bearing facies in the Devonian (Couvinian to Frasnian) reef complexes of Belgium. Palaeogeography, Palaeoclimatology, Palaeoecology, 27:103127.CrossRefGoogle Scholar
Wray, J. L. 1967. Upper Devonian calcareous algae from the Canning Basin, western Australia. Professional Contributions of the Colorado School of Mines, 3, 76 p.Google Scholar
Wray, J. L. 1977. Calcareous Algae. Elsevier, New York, 185 p.Google Scholar
Wray, J. L., and Playford, P. E. 1970. Some occurrences of Devonian reef-building algae in Alberta. Bulletin Canadian Petroleum Geology, 18:544555.Google Scholar