Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T04:22:35.390Z Has data issue: false hasContentIssue false

Spirolites radwanskii n. igen. n. isp.: vermetid gastropod attachment etching trace from the middle Miocene rocky coast of the Paratethys, Poland

Published online by Cambridge University Press:  25 April 2018

Alfred Uchman
Affiliation:
Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a; 30-387 Kraków, Poland 〈alfred.uchman@uj.edu.pl〉; 〈michal.stachacz@uj.edu.pl〉; 〈klaudiusz.salamon@doctoral.uj.edu.pl〉
Michał Stachacz
Affiliation:
Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a; 30-387 Kraków, Poland 〈alfred.uchman@uj.edu.pl〉; 〈michal.stachacz@uj.edu.pl〉; 〈klaudiusz.salamon@doctoral.uj.edu.pl〉
Klaudiusz Salamon
Affiliation:
Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a; 30-387 Kraków, Poland 〈alfred.uchman@uj.edu.pl〉; 〈michal.stachacz@uj.edu.pl〉; 〈klaudiusz.salamon@doctoral.uj.edu.pl〉

Abstract

A new ichnogenus and ichnospecies, Spirolites radwanskii, is a spiral boring recognized in large limestone clasts deposited in a Miocene cliff-foot ramp. It is characterized by a semi-circular or inverted Ω-shaped cross section, gradually increasing width, gradual entrenching in the rock from the narrower side, consistent coiling direction, steep margin from the wider side, two-order annuli, and occasional truncation of the narrower side by the wider part. It is interpreted as a boring of vermetid gastropods, similar to the recent Dendropoma. Spirolites co-occurs with the bivalve borings Gastrochaenolites, mostly G. torpedo, sponge borings Entobia, and the spionid polychaete boring Caulostrepsis, which are typical of the Entobia ichnofacies. Spirolites was produced in very shallow, clean and warm sea waters.

Type
Articles
Copyright
Copyright © 2018, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrowicz, S.W., Garlicki, A., and Rutkowski, J., 1982, Podstawowe jednostki litostratygraficzne miocenu zapadliska przedkarpackiego: Kwartalnik Geologiczny, v. 26, p. 470471.Google Scholar
Bałuk, W., and Radwański, A., 1977, Organic communities and facies development of the Korytnica basin (Middle Miocene; Holy Cross Mountains, Central Poland): Acta Geologica Polonica, v. 27, p. 85123.Google Scholar
Beuck, L., López Correa, M., and Freiwald, A., 2008, Biogeographical distribution of Hyrrokkin (Rosalinidae, Foraminifera) and its host-specific morphological and textural trace variability, in Wisshak, M., and Tapanila, L., ed., Current Developments in Bioerosion: Berlin, Heidelberg, Springer, p. 329360.Google Scholar
Biondi Giunti, S., 1859, Descrizione di alcune specie malacologiche nuove che vivono nel nostro litorale: Atti dell’Accademia Gioenia di Scienze Naturali, v. 14, p. 113124.Google Scholar
Boekschoten, G.J., 1966, Shell borings of sessile epibiontic organisms as palaeoecoligical guides (with exanples from Dutch coast): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 2, p. 333379.Google Scholar
Boettger, O., 1907, Zur Kentnis der Fauna der mittelmiocanen Schichten von Kostej im Krassö-Szörényer Komitat: Verhandlungen und Mitteilungen des siebenburgischen Vereins fur Naturwissenschaften zu Hermannstadt, v. 55, p. 101217.Google Scholar
Bromley, R.G., 1978, Bioerosion of Bermuda reefs: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 23, p. 169197.Google Scholar
Bromley, R.G., 2008, Trace fossil Podichnus obliquus, attachment scar of the brachiopod Terebratulina retusa: Pleistocene, Rhodes, Greece: Fossils and Strata, v. 54, p. 227230.Google Scholar
Bromley, R.G., and Asgaard, U., 1993a, Endolithic community replacement on a Pliocene rocky coast: Ichnos, v. 2, p. 96116.Google Scholar
Bromley, R.G., and Asgaard, U., 1993b, Two bioerosion ichnofacies produced by early and late burial associated with sea-level change: Geologische Rundschau, v. 82, p. 276280.Google Scholar
Bromley, R.G., and D’Alessandro, A., 1983, Bioerosion in the Pleistocene of southern Italy: ichnogenera Caulostrepsis and Maeandropolydora : Rivista Italiana di Paleontologia e Stratigrafia, v. 89, p. 283309.Google Scholar
Bromley, R.G., and D’Alessandro, A., 1984, The ichnogenus Entobia from the Miocene, Pliocene and Pleistocene of southern Italy: Rivista Italiana di Paleontologia e Stratigrafia, v. 90, p. 227296.Google Scholar
Bromley, R.G., and Heinberg, C., 2006, Attachment strategies of organisms on hard substrates: a palaeontological view: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 232, p. 429453.Google Scholar
Bromley, R.G., and Surlyk, F., 1973, Borings produced by brachiopod pedicles, fossil and Recent: Lethaia, v. 6, p. 349365.Google Scholar
Bronn, H.G., 1837–1838, Lethaia Geognostica oder Abbildungen und Beschreibungen der für die Gebirgs-Formationen bezeichnendsten Versteinerungen: Stuttgart: Schweizerbart, 1, 350 p.Google Scholar
Buatois, L., Wisshak, M., Wilson, M.A., and Mángano, G., 2017, Categories of architectural designs in trace fossils: a measure of ichnodisparity: Earth-Science Reviews, v. 164, p. 102181.Google Scholar
Clarke, J.M., 1908, The beginnings of dependent life: New York State Museum Bulletin, v. 121, p. 146169.Google Scholar
Foster, G.L., Lear, C.H., and Rae, J.W.B., 2012, The evolution of pCO2, ice volume and climate during the middle Miocene: Earth and Planetary Scientific Letters, v. 341–344, p. 243254.Google Scholar
Galinou-Mitsoudi, S., and Sinis, A.I., 1995, Age and growth of Lithophaga lithophaga (Linnaeus, 1758) (Bivalvia: Mytilidae), based on annual growth lines in the shell: Journal of Molluscan Studies, v. 61, p. 435453.Google Scholar
Galinou-Mitsoudi, S., and Sinis, A. I., 1997, Population dynamics of the date mussel, Lithophaga lithophaga (L., 1758) (Bivalvia: Mytilidae), in the Voikos Gulf (Greece): Helgoländer Meeresunteruchungen, v. 51, p. 137154.Google Scholar
Gibert, J.M., de, Martinell, J., and Domènech, R., 1998, Entobia ichnofacies in fossil rocky shores, lower Pliocene, northwestern Mediterranean: Palaios, v. 13, p. 476487.Google Scholar
Golding, R.E., Bieler, R., Rawlings, T.A., and Collins, T.M., 2014, Deconstructing Dendropoma: a systematic revision of a world-wide worm-snail group, with descriptions of new genera (Caenogastropoda: Vermetidae): Malacologia, v. 57, p. 197.Google Scholar
Hadfield, M.G., Kay, E.A., Gillette, M.U., and Lloyd, M.C., 1972, The Vermetidae (Mollusca: Gastropoda) of the Hawaiian Islands: Marine Biology, v. 12, p. 8198.Google Scholar
Hanken, N.-M., Uchman, A., and Jakobsen, S. L., 2012, Late Pleistocene–early Holocene polychaete borings in north-east Spitsbergen and their palaeoecological and climatic implications: an example from the Basissletta area: Boreas, v. 41, p. 4255.Google Scholar
Hoşgör, I., and Okan, Y., 2010, Bioerosion structures on the Crassostrea gryphoides (Schlotheim, 1813) shells from the Salyan Formation (Upper Burdigalian–Lower Langhian), K. Maraş, Southeastern Turkey: Türkiye Jeoloji Bülteni, v. 53, p. 4562.Google Scholar
Jagt, W.M., 2003, The ichnofossil genera Radulichnus and Renichnus in the Maastrichtian of the Netherlands and Belgium: Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre, v. 73, p. 175184.Google Scholar
Jasionowski, M., 1997, Zarys litostratygrafii osadów mioceńskich wschodniej części zapadliska przedkarpackiego: Biuletyn Państwowego Instytutu Geologicznego, v. 375, p. 4360.Google Scholar
Johnston, G., 1838, Miscellanea Zoologica, 3. The British Ariciadae: Magazine of Zoology and Botany, Edinburgh, v. 2, p. 6373.Google Scholar
Kelly, S.R.A., and Bromley, R.G., 1984, Ichnological nomenclature of clavate borings: Palaeontology, v. 27, p. 793807.Google Scholar
Key, M.M. Jr., Zágoršek, K., and Patterson, W.P., 2013, Paleoenvironmental reconstruction of the Early to Middle Miocene Central Paratethys using stable isotopes from bryozoan skeletons: International Journal of Earth Sciences, v. 102, p. 305318.Google Scholar
Kleemann, K., 1973, Der Gesteinsabbau durch Ätzmuscheln an Kalkküsten: Oecologia, v. 13, p. 377395.Google Scholar
Kleemann, K., 1990, Boring and growth in chemically boring bivalves from the Caribbean, Eastern Pacific and Australia’s Great Barrier Reef: Senckenbergiana Maritima, v. 21, p. 101154.Google Scholar
Kleemann, K.H., 1974, Raumkonkurrenz bei Ätzmuscheln: Marine Biology, v. 26, p. 361364.Google Scholar
Kroh, A., 2007, Climate changes in the Early to Middle Miocene of the Central Paratethys and the origin of its echinoderm fauna: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 253, p. 169207.Google Scholar
Leymerie, M.A., 1842, Suite de mémoire sue le Terrain Crétacé du Départment de l’Aube: Mémoires de la Société Géologique de la France, v. 5, p. 134.Google Scholar
LamarckJ.B.M., de J.B.M., de, 1818, Animaux sans vertèbres, présentant les caractères généraux et particuliers de ces animaux, v. 5, Les Conchiferes: Paris, Deterville/Verdière, 612 p.Google Scholar
Linnaeus, C., 1758, Systema naturae per regna tria naturae. Editio decima, reformata: Tomus I, Regnum animale: Holmia [Stockholm], Laurentii Salvii, 824 p.Google Scholar
Linnaeus, C., 1767, Systema naturae. Editio duodecima, reformata: Holmia [Stockholm], Laurentii Salvii, p. 5331327.Google Scholar
Małecki, J., 1966, Miocene Bryozoa from the borings of lithophags of Skotniki near Busko: Rocznik Polskiego Towarzystwa Geologicznego, v. 36, p. 481494.Google Scholar
Mayoral, E., 1987, Acción bioerosiva de mollusca (Gastropoda, Bivalvia) en Plioceno inferior de la Cuenca del Bajo Guadarquivir: Revista Española de Paleontologia, v. 2, p. 4958.Google Scholar
Neumann, C., Wisshak, M., Aberhan, M., Girod, P., Rösner, T., and Bromley, R.G., 2015, Centrichnus eccentricus revisited: a new view on anomiid bivalve bioerosion: Acta Palaeontologica Polonica, v. 60, p. 539549.Google Scholar
Oszczypko, N., 2001, Rozwój zapadliska przedkarpackiego w miocenie (The Miocene development of the Polish Carpathian Foredeep): Przegląd Geologiczny, v. 49, p. 717723.Google Scholar
Oszczypko, N., Uchman, A., and Bubniak, I., 2016, The Stebnyk Formation (Miocene) in the Boryslav-Pokuttya and Sambir nappes of the Ukrainian Carpathians: a record of environmental change in the Carpathian Foredeep: Geological Quarterly, v. 60, p. 473492.Google Scholar
Pacheco, A., and Laudien, J., 2008, Dendropoma mejillonensis sp. nov., a new species of vermetid (Caenogastropoda) from Northern Chile: The Veliger, v. 50, p. 219224.Google Scholar
Pennant, T., 1777, British Zoology, v. 4, 4th ed., London, B. White, 154 p.Google Scholar
Polkowsky, S., 2010, Einblick in die Fauna und Flora des oberoligozänen Sternberger Gesteins von Mecklenburg: Available at https://www.steinkern.de/fundorte/sonstige-bundeslaender/221-einblick-in-die-fauna-und-flora-des-oberoligozaenen-sternberger-gesteins-von-mecklenburg.html (accessed 18 February 2017).Google Scholar
Radwańska, U., 1994, Tube-dwelling polychaetes from the Korytnica Basin (Middle Miocene; Holy Cross Mountains, Central Poland): Acta Geologica Polonica, v. 44, p. 3581.Google Scholar
Radwański, A., 1964, Boring animals in Miocene littoral environments of southern Poland: Bulletin de l’Académie Polonaise des Sciences, Série des Seciences Géologique et Géogrphique, v. 12, p. 5762.Google Scholar
Radwański, A., 1965, Additional notes on Miocene littoral structures of southern Poland: Bulletin de l’Académie Polonaise des Sciences, Série des Seciences Géologique et Géographique, v. 13, p. 167173.Google Scholar
Radwański, A., 1967, Problems of Miocene littoral structures on the southern slopes of the Holy Cross Mts., Central Poland: Rocznik Polskiego Towarzystwa Geologicznego, v. 37, p. 169175.Google Scholar
Radwański, A., 1968, Lower Tortonian transgression onto the Miechów and Cracow uplands: Acta Geologica Polonica, v. 38, p. 387445.Google Scholar
Radwański, A., 1969, Lower Tortonian transgression onto the southern slopes of the Holy Cross Mountains: Acta Geologica Polonica, v. 19, p. 1164.Google Scholar
Radwański, A., 1970, Dependence of rock-borers and burrowers on the environmental conditions within the Tortonian littoral zone of Southern Poland, in Crimes T.P., and Harper, J.C., ed., Trace fossils: Geological Journal: Special Issue no. 3, p. 371–390.Google Scholar
Radwański, A., 1973, Lower Tortonian transgression onto the south-eastern and eastern slopes of the Holy Cross Mts.: Acta Geologica Polonica, v. 23, p. 375434.Google Scholar
Radwański, A., 1977, Present-day types of trace in the Neogene sequence; their problems of nomenclature and preservation, in Crimes, T.P., and Harper, J.C., ed., Trace fossils 2: Geological Journal, Special Issue no. 9, p. 227–264.Google Scholar
Radwański, A., and Górka, M., 2008, Miocene seashore of the Holy Cross Mountains, riddled by mass-aggregated rock-borers’ ichnia, in Pieńkowski, G., and Uchman, A., ed., Ichnological Sites of Poland; The Holy Cross Mountains and the Carpathian Flysch: The Second International Congress on Ichnology, Cracow, Poland, August 29–September 8, 2008; Pre-Congress and Post-Congress Field Trip Guidebook: Warszawa, Polish Geological Institute, p. 83–91.Google Scholar
Radwański, A., and Górka, M., 2015, Miocene rocky seashores at Korytnica, Lubania and Skotniki, in Skompski, S., and Żylińska, A., ed., The Holy Cross Mountains–25 journeys through Earth history: Warszawa, University of Warsaw, Faculty of Geology, p. 169176.Google Scholar
Rajchel, J., and Uchman, A., 1999, Trace fossils from the Miocene transgressive siliciclastics near Dynów: SE Poland: Acta Palaeontologica Romaniae, v. 2, p. 433440.Google Scholar
Randazzo, A.F., Müller, P., Lelkes, G., Juhasz, E., and Hamor, T., 1999, Cool-water limestones of the Pannonian basinal system, Middle Miocene, Hungary: Journal of Sedimentary Research, v. 69, p. 283293.Google Scholar
Robinson, J.H., and Lee, D.E., 2008, Brachiopod pedicle traces: recognition of three separate types of trace and redefinition of Podichnus centrifugalis Bromley and Surlyk, 1973: Fossils and Strata, v. 54, p. 219225.Google Scholar
Rögl, F., 1998, Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene): Annalen Naturhistorischen Museums in Wien, v. 99a, p. 279310.Google Scholar
Rosso, A., Sanfilippo, R., Di Geronimo, I., and Bonfiglio, L., 2016, Pleistocene occurrence of recently discovered cryptic vermetid species from the Mediterranean: Bollettino della Società Paleontologica Italiana, v. 55, p. 105109.Google Scholar
Safriel, U.N., 1975, The role of vermetid gastropods in the formation of Mediterranean and Atlantic reefs: Oecologia, v. 20, p. 85101.Google Scholar
Santos, A., Mayoral, E., Muñiz, F., Vera-Peláez, J.L., and Lozano Francisco, M.C., 2003, Estructuras bioerosivas de anélidos poliquetos (Serpulidae) en el Neógeno superior del Sur de la Península Ibérica (Bioerosive structures of polychaete annelids [Serpulidae] from the Upper Neogene of the South Iberian Peninsula): Geogaceta, v. 33, p. 2730.Google Scholar
Savazzi, E., 1996, Adaptations of vermetid and siliquariid gastropods: Palaeontology, v. 39, p. 157177.Google Scholar
Savazzi, E., 2001, Morphodynamics of an endolitic vermetid gastropods: Palaeontological Research, v. 5, p. 311.Google Scholar
Schiaparelli, S., and Cattaneo-Vietti, R., 1999, Functional morphology of vermetid feeding-tubes: Lethaia, v. 32, p. 4146.Google Scholar
Schiaparelli, S., Albertelli, G., and Cattaneo-Vietti, R., 2006, Phenotypic plasticity of Vermetidae suspension feeding: a potential bias in their use as biological sea-level indicators: Marine Ecology, v. 27, p. 4453.Google Scholar
Schilthuizen, M., and Davison, A., 2005, The convoluted evolution of snail chirality: Naturwissenschaften, v. 92, p. 504515.Google Scholar
Silenzi, S., Antonioli, F., and Chemelloc, R., 2004, A new marker for sea surface temperature trend during the last centuries in temperate areas: vermetid reef: Global and Planetary Change, v. 40, p. 105114.Google Scholar
Studencki, W., 1999, Red-algal limestones in the Middle Miocene of the Carpathian Foredeep in Poland: facies variability and palaeoclimate implications: Geological Quarterly, v. 43, p. 395404.Google Scholar
Taddei Ruggiero, E., 1999, Bioerosive processes affecting a population of brachiopods (Upper Pliocene, Apulia): Bulletin of the Geological Society of Denmark, v. 45, p. 169172.Google Scholar
Taylor, P.D., and Vinn, O., 2006, Convergence in small spiral worm tubes (‘Spirorbis’) and its palaeoenvironmental implications: Journal of the Geological Society, v. 163, p. 225228.Google Scholar
Uchman, A., Kleemann, K., and Rattazzi, B., 2017, Macroborings, their tracemakers and nestlers in clasts of a fan delta: the Savignone Conglomerate (Lower Oligocene), Northern Apennines, Italy: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 283, p. 3551.Google Scholar
Vrielynck, B., Odin, G.S., and Dercourt, J., 1997, Miocene palaeogeography of the Tethys Ocean; potential global correlations in the Mediterranean, in Montanari, A., Odin, G.S., and Coccioni, R., eds., Miocene Stratigraphy: An Integrated Approach: Developments in Palaeontology and Stratigraphy, v. 15, p. 157165.Google Scholar
Wisshak, M., Tribollet, A., Golubic, S., Jakobsen, J., and Freiwald, A., 2011, Temperate bioerosion: ichno- and biodiversity from intertidal to bathyal depths (Azores): Geobiology, v. 9, p. 492520.Google Scholar
Wisshak, M., Berning, B., Jakobsen, J., and Freiwald, A., 2015, Temperate carbonate production: biodiversity of calcareous epiliths from intertidal to bathyal depths (Azores): Marine Biodiversity, v. 45, p. 87112.Google Scholar