Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T03:17:12.190Z Has data issue: false hasContentIssue false

Stratigraphic distributions of genera and species of Neogene to Recent Caribbean reef corals

Published online by Cambridge University Press:  20 May 2016

Ann F. Budd
Affiliation:
Department of Geology, University of Iowa, Iowa City 52242, USA
Thomas A. Stemann
Affiliation:
Geologisches Institut, Universität Bern, Baltzerstrasse 1, CH-3012 Bern, Switzerland
Kenneth G. Johnson
Affiliation:
Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom

Abstract

To document evolutionary patterns in late Cenozoic Caribbean reef corals, we compiled composite stratigraphic ranges of 49 genera and 175 species using Neogene occurrences in the Cibao Valley sequence of the northern Dominican Republic and faunal lists for 24 Miocene to Recent sites across the Caribbean region. This new compilation benefits in particular from increased sampling at late Miocene to early Pleistocene sites and from increased resolution and greater taxonomic consistency provided by the use of morphometric procedures in species recognition.

Preliminary examination and quantitative analysis of origination and extinction patterns suggest that a major episode of turnover took place between 4 and 1 Ma during Plio-Pleistocene time. During the episode, extinctions were approximately simultaneous in species of all reef-building families, except the Mussidae. Most strongly affected were the Pocilloporidae (Stylophora and Pocillopora), Agariciidae (Pavona and Gardineroseris), and free-living members of the Faviidae and Meandrinidae. At the genus level, mono- and paucispecific as well as more speciose genera became regionally extinct. Many of the extinct genera live today in the Indo-Pacific region, and some are important components of modern eastern Pacific reefs. Global extinctions were concentrated in free-living genera. During the turnover episode, no new genera or higher taxa arose. Instead, new species originated within the surviving Caribbean genera at approximately the same time as the extinctions, including many dominant modern Caribbean reef-building corals (e.g., Acropora palmata and the Montastraea annularis complex).

Excluding this episode, the taxonomic composition of the Caribbean reef-coral fauna remained relatively unchanged during the Neogene. Minor exceptions include: 1) high originations in the Agariciidae and free-living corals during late Miocene time; and 2) regional or global extinctions of several important Oligocene Caribbean reef builders during early to middle Miocene time.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aubry, M.-P. 1993. Calcareous nannofossil stratigraphy of the Neogene formations of eastern Jamaica. In Wright, R. M. and Robinson, E. R. (eds.), Biostratigraphy of Jamaica. Geological Society of America, Memoir 182:131178.Google Scholar
Barry, J. C., Flynn, L. J., and Pilbeam, D. R. 1990. Faunal diversity and turnover in a Miocene terrestrial sequence, p. 381421. In Ross, R. M. and Allmon, W. D. (eds.), Causes of Evolution: A Paleontological Perspective. University of Chicago Press, Chicago.Google Scholar
Berggren, W. A., Kent, D. V., and van Couvering, J. A. 1985. Neogene geochronology and chronostratigraphy, p. 211260. In Snelling, N. J. (ed.), The Chronology of the Geological Record. Geological Society of London, Memoir 10.Google Scholar
Blacut, G., and Kleinpell, R. M. 1969. A stratigraphic sequence of benthonic smaller foraminifera from the La Boca Formation, Panama Canal Zone. Cushman Foundation for Foraminiferal Research, Contributions, 20:122.Google Scholar
van den Bold, W. A. 1970. Ostracoda of the lower and middle Miocene of St. Croix, St. Martin, and Anguilla. Caribbean Journal of Science, 10:3561.Google Scholar
van den Bold, W. A. 1971. Ostracoda of the Coastal Group of Formations of Jamaica. Gulf Coast Association of Geological Societies, Transactions, 1:325348.Google Scholar
van den Bold, W. A. 1975. Ostracodes from the Late Neogene of Cuba. Bulletins of American Paleontology, 68:121167.Google Scholar
Bolli, H. M. 1970. The foraminifera of sites 23–31, leg 4. Initial Reports of the Deep Sea Drilling Project, 4:577643.Google Scholar
Budd, A. F. 1989. Biogeography of Neogene Caribbean reef corals and its implications for the ancestry of eastern Pacific reef corals. Association of Australasian Palaeontologists, Memoirs, 8:219230.Google Scholar
Budd, A. F. 1991. Neogene paleontology in the northern Dominican Republic. 11. The family Faviidae (Anthozoa: Scleractinia). Part I. Bulletins of American Paleontology, 101:583.Google Scholar
Budd, A. F. 1993. Variation within and among morphospecies of Montastraea . Courier Forschungs-Institut Senckenberg, 164:241254.Google Scholar
Budd, A. F., and Coates, A. G. 1992. Non-progressive evolution in a clade of Cretaceous Montastraea-like corals. Paleobiology, 18:425446.CrossRefGoogle Scholar
Budd, A. F., Edwards, J. C., and Johnson, K. G. 1989. Miocene coral assemblages in Anguilla, BWI, and their implications for the interpretation of vertical succession on fossil reefs. Palaios, 4:264275.CrossRefGoogle Scholar
Budd, A. F., Johnson, K. G., and Stemann, T. A. 1994. Plio-Pleistocene extinctions and the origin of the modern Caribbean reef-coral fauna, p. 713. In Ginsburg, R. N. (compiler), Proceedings of the Colloquium on Global Aspects of Coral Reefs: health, hazards, history. University of Miami, Miami, Florida.Google Scholar
Budd, A. F., Stemann, T. A., and Stewart, R. H. 1992. Eocene Caribbean reef corals: a unique fauna from the Gatuncillo Formation of Panama. Journal of Paleontology, 66:578602.CrossRefGoogle Scholar
Bryant, J. D., MacFadden, B. J., and Mueller, P. A. 1992. Improved chronologic resolution of the Hawthorn and Alum Bluff Groups in northern Florida: implications for Miocene chronostratigraphy. Geological Society of America Bulletin, 104:208218.2.3.CO;2>CrossRefGoogle Scholar
Carter, J. G., and Rossbach, T. J. 1989. Correlation chart, Gulf and Atlantic Coasts of North America. Biostratigraphy Newsletter, 3, 48 p.Google Scholar
Coates, A. G., et al. 1992. Closure of the isthmus of Panama: the near-shore marine record of Costa Rica and western Panama. Geological Society of America Bulletin, 104:814828.2.3.CO;2>CrossRefGoogle Scholar
Foster, A. B. 1986. Neogene paleontology in the northern Dominican Republic. 3. The family Poritidae (Anthozoa: Scleractinia). Bulletins of American Paleontology, 90:47123.Google Scholar
Foster, A. B. 1987. Neogene paleontology in the northern Dominican Republic. 4. The genus Stephanocoenia (Anthozoa: Scleractinia: Astrocoeniidae). Bulletins of American Paleontology, 93:522.Google Scholar
Frost, S. H. 1977. Miocene to Holocene evolution of Caribbean province reef-building corals. Third International Coral Reef Symposium, Proceedings, 2:353360.Google Scholar
Frost, S. H., and Langenheim, R. L. 1974. Cenozoic Reef Biofacies. Northern Illinois University Press, DeKalb, Illinois, 388 p.Google Scholar
Frost, S. H., and Weiss, M. P. 1979. Patch-reef communities and succession in the Oligocene of Antigua, West Indies. Geological Society of America Bulletin, Part II, 90:10941141.CrossRefGoogle Scholar
Frost, S. H., Harbour, J. L., Beach, D. K., Realini, M. J., and Harris, P. M. 1983. Oligocene reef tract development, southwestern Puerto Rico. Sedimenta IX, University of Miami, Coral Gables, Florida, 141 p.Google Scholar
Geister, J. 1975. Riffbau und geologische Entwicklungsgeschichte der Insel San Andrés (westliches Karibisches Meer, Kolumbien). Stuttgarter Beiträge zur Naturkunde, B, 15, 203 p.Google Scholar
Geister, J. 1982. Pleistocene reef terraces and coral environments at Santo Domingo and near Boca Chica, southern coast of the Dominican Republic. Ninth Caribbean Geological Conference (Santo Domingo, 1980), Transactions, 2:689703.Google Scholar
Geister, J. 1992. Modern reef development and Cenozoic evolution of an oceanic island/reef complex: Isla de Providencia (western Caribbean Sea, Colombia). Facies, 27:170.CrossRefGoogle Scholar
Glynn, P. W., and Wellington, G. M. 1983. Corals and Coral Reefs of the Galápagos Islands. University of California Press, Berkeley, 330 p.Google Scholar
González, L. A., Ruiz, H. M., Budd, A. F., and Monnell, V. 1992. A late Miocene barrier reef in Isla de Mona, Puerto Rico. Geological Society of America, Abstracts with Programs, 24(7):A350.Google Scholar
Jones, D. S., MacFadden, B. J., Webb, S. D., Mueller, P. A., Hoddell, D. A., and Cronin, T. M. 1991. Integrated geochronology of a classic Pliocene fossil site in Florida: linking marine and terrestrial biochronologies. Journal of Geology, 99:637648.CrossRefGoogle Scholar
Kerr, D. R., and Kidwell, S. M. 1991. Late Cenozoic sedimentation and tectonics, western Salton Trough, California, p. 397416. In Walawender, M. J. and Hanan, B. B. (eds.), Geological Excursions in Southern California and Mexico. Geological Society of America, Guidebook, 1991 Annual Meeting, Boulder, Colorado.Google Scholar
Knowlton, N., Weil, E., Weigt, L. A., and Guzman, H. M. 1992. Sibling species in Montastraea annularis, coral bleaching, and the coral climate record. Science, 255:330333.CrossRefGoogle ScholarPubMed
Koch, C. F., and Morgan, J. P. 1988. On the expected distribution of species ranges. Paleobiology, 14:126138.CrossRefGoogle Scholar
Laborel, J. 1969. Madréporaires et hydrocoralliaires récifaux des cotes brésiliennes. Institut Océanographique, Annales, 47:171229.Google Scholar
Liddell, W. D., and Ohlhorst, S. L. 1988. Comparison of western Atlantic coral reef communities. Sixth International Coral Reef Symposium, Proceedings, 3:281286.Google Scholar
Marshall, C. R. 1990. Confidence intervals on stratigraphic ranges. Paleobiology, 16:110.CrossRefGoogle Scholar
Maurrasse, F. 1990. Stratigraphic correlation for the circum-Caribbean region, Pl. 4, 5. In Dengo, G. and Case, J. E. (eds.), The Caribbean Region. The Geology of North America, Volume H. Geological Society of America, Boulder, Colorado.Google Scholar
Meeder, J. F. 1987. The paleontology, petrology, and depositional model of the Pliocene Tamiami Formation, southwest Florida (with special reference to corals and reef development). Unpubl. Ph.D. dissertation, University of Miami, Coral Gables, Florida, 748 p.Google Scholar
Potts, D. C. 1984. Generation times and the Quaternary evolution of reef-building corals. Paleobiology, 10:4858.CrossRefGoogle Scholar
Potts, D. C., Budd, A. F., and Garthwaite, R. L. 1993. Soft tissue vs. skeletal approaches to species recognition and phylogeny reconstruction in corals. Courier Forschung-Institut Senckenberg, 164:221231.Google Scholar
Saunders, J. B., Jung, P., and Biju-Duval, B. 1986. Neogene Paleontology in the northern Dominican Republic. 1. Field surveys, lithology, environment, and age. Bulletins of American Paleontology, 89, 79 p.Google Scholar
Stanley, S. M. 1986. Anatomy of a regional mass extinction: Plio-Pleistocene decimation of the western Atlantic bivalve fauna. Palaios, 1:1736.CrossRefGoogle Scholar
Stanley, S. M., and Campbell, L. D. 1981. Neogene mass extinction of western Atlantic molluscs. Nature, 293:457459.CrossRefGoogle Scholar
Stemann, T. A. 1991. Evolution of the reef-coral family Agariciidae (Anthozoa: Scleractinia) in the Neogene through Recent of the Caribbean. Unpubl. Ph.D. dissertation, University of Iowa, Iowa City, 321 p.Google Scholar
Vaughan, T. W. 1917. The reef-coral fauna of Carrizo Creek, Imperial County, California and its significance. U.S. Geological Survey Professional Paper, 98T:355386.Google Scholar
Vaughan, T. W. 1919. Fossil corals from Central America, Cuba, and Porto Rico with an account of American Tertiary, Pleistocene, and Recent coral reefs. U.S. National Museum Bulletin, 103:189524.Google Scholar
Vaughan, T. W., and Hoffmeister, J. E. 1925. New species of fossil corals from the Dominican Republic. Bulletin of the Museum of Comparative Zoology, Harvard College, 67:315326.Google Scholar
Vaughan, T. W., and Hoffmeister, J. E. 1926. Miocene corals from Trinidad. Papers of the Department of Marine Biology, Carnegie Institution of Washington, 23:107132.Google Scholar
Vaughan, T. W., and Wells, J. W. 1943. Revision of the suborders, families, and genera of the Scleractinia. Geological Society of America, Special Paper 104, 363 p.Google Scholar
Veron, J. E. N. 1986. Corals of Australia and the Indo-Pacific. Angula and Robertson Publishers, North Ryde, NSW, Australia, 644 p.Google Scholar
Veron, J. E. N., and Kelley, R. 1988. Species stability in reef corals of Papua New Guinea and the Indo Pacific. Association of Australasian Palaeontologists, Memoir 6, 69 p.Google Scholar
Veron, J. E. N., and Pichon, M. 1979. Scleractinia of Eastern Australia. Part III. Australian Institute of Marine Science, 4, 459 p.Google Scholar
Veron, J. E. N., and Wijsman-Best, M. 1977. Scleractinia of eastern Australia. Part II. Australian Institute of Marine Science, 3, 233 p.Google Scholar
Weisbord, N. E. 1971. Corals from the Chipola and Jackson Bluff Formations of Florida. Florida Bureau of Geology, Geological Bulletin, 53, 100 p.Google Scholar
Weisbord, N. E. 1973. New and little-known corals from the Tampa Formation of Florida. Florida Bureau of Geology, Geological Bulletin, 56, 147 p.Google Scholar
Weisbord, N. E. 1974. Late Cenozoic corals of south Florida. Bulletins of American Paleontology, 66:255544.Google Scholar
Wells, J. W. 1956. Scleractinia, p. F328F444. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. F, Coelenterata. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Wells, J. W., and Lang, J. C. 1973. Systematic list of Jamaican shallow-water Scleractinia. Bulletin of Marine Science, 23:5558.Google Scholar

Systematic Bibliography

Achiardi, A. d'. 1875. Coralli eocenici del Friuli. Societa Toscana di Scienze Naturelle, Pisa, Atti, Proc. Verb., 2:239242.Google Scholar
de Blainville, H. M. 1830. Dictionnaire des sciences naturelles. Zoophytes, Volume 60, Paris, p. 297364.Google Scholar
Budd, A. F. 1993. Variation within and among morphospecies of Montastraea . Courier Forschungs-Institut Senckenberg, 164:241254.Google Scholar
Coryell, H. N., and Ohlsen, V. 1929. Fossil corals of Porto Rico, with descriptions also of a few Recent species. New York Academy of Sciences, Scientific Survey of Porto Rico and the Virgin Islands, 3:167236.Google Scholar
Dana, J. D. 1846. Zoophytes. United States Exploring Expedition 1838–1842, Philadelphia, Volume 7, 1120, 709–720.Google Scholar
Dana, J. D. 1848. Zoophytes. United States Exploring Expedition 1838–1842, Philadelphia, Volume 7, 121708, 721–740.Google Scholar
Dinesen, Z. D. 1980. A revision of the coral genus Leptoseris (Scleractinia: Fungiina: Agariciidae). Memoirs of the Queensland Museum, 20:181235.Google Scholar
Duchassaing, P., and Michelotti, J. 1860. Mémoire sur les coralliaires des Antilles. Memorie della Reale Accademia delle Scienze di Torino. Serie Seconda, 19:5687.Google Scholar
Duchassaing, P., and Michelotti, J. 1866. Supplemént au mémoire sur les coralliaires des Antilles. Memorie della Reale Accademia delle Scienze di Torino. Serie Seconda, 23:97206.Google Scholar
Duncan, P. M. 1863. On the fossil corals of the West Indian Islands. Part 1. Quarterly Journal of the Geological Society of London, 19:406458.CrossRefGoogle Scholar
Duncan, P. M. 1864. On the fossil corals of the West Indian Islands. Part 2. Quarterly Journal of the Geological Society of London, 20:2044.CrossRefGoogle Scholar
Duncan, P. M. 1873. On the older Tertiary formations of the West Indian Islands. Quarterly Journal of the Geological Society of London, 29:548565.CrossRefGoogle Scholar
Ehrenberg, G. G. 1834. Beiträge zur physiologischen Kenntniss der Corallenthiere im allgemeinen und besonders des Rothen Meeres. Kaiserliche Akademie der Wissenschaften Berlin, Abhandlungen, 1832:250380.Google Scholar
Ellis, J., and Solander, D. 1786. The natural history of many curious and uncommon zoophytes. London, 208 p.CrossRefGoogle Scholar
Esper, J. C. 1797. Fortsetzungen der Pflanzenthiere. Nürnberg, 1:169230.Google Scholar
Foster, A. B. 1986. Neogene paleontology in the northern Dominican Republic. 3. The family Poritidae (Anthozoa: Scleractinia). Bulletins of American Paleontology, 90:47123.Google Scholar
Foster, A. B. 1987. Neogene paleontology in the northern Dominican Republic. 4. The genus Stephanocoenia (Anthozoa: Scleractinia: Astrocoeniidae). Bulletins of American Paleontology, 93:522.Google Scholar
Gane, H. S. 1895. A contribution to the Neocene corals of the United States. Johns Hopkins University Circular, 15:810.Google Scholar
Geister, J. 1975. Riffbau und geologische Entwicklungsgeschichte der Insel San Andrés (westliches Karibisches Meer, Kolumbien). Stuttgarter Beiträge zur Naturkunde, B, 15, 203 p.Google Scholar
Geister, J. 1982. Pleistocene reef terraces and coral environments at Santo Domingo and near Boca Chica, southern coast of the Dominican Republic. North Caribbean Geological Conference (Santo Domingo, 1980), Transactions, 2:689703.Google Scholar
Gray, J. E. 1842. Northern Zoological Gallery, Room II, III, Radiated animals, p. 128135. In Synopsis of the Contents of the British Museum, 44th edition. London.Google Scholar
Gray, J. E. 1847. An outline of an arrangement of stony corals. Annals and Magazine of Natural History, Series 1, 19:120128.CrossRefGoogle Scholar
Gregory, J. W. 1900. The corals. Jurassic fauna of Cutch. Palaeontologica Indica, Series 9, 2:1195.Google Scholar
Haime, J. 1852. In Bellardi, Catalogue raisonné des fossiles nummulitiques du Comté de Nice. Société de la Géologique France, Mémoires, 4:279290.Google Scholar
Heller, C. 1868. Die Zoophyten und Echinodermen des Adriatischen Meeres. Zoologische Botanische Verhandlungen Wien, 18:188.Google Scholar
Horst, C. J. van der. 1921. The Madreporaria of the Siboga Expedition. II. Madreporaria Fungida. Siboga Expeditie, XVI b:5398.Google Scholar
Knowlton, N., Weil, E., Weigt, L. A., and Guzman, H. M. 1992. Sibling species in Montastraea annularis, coral bleaching, and the coral climate record. Science, 255:330333.CrossRefGoogle ScholarPubMed
Koby, F. 1890. Monographie des polypiers jurassiques de la Suisse. Société de la Paléontologie Suisse, Mémoires, 16:467582.Google Scholar
Laborel, J. 1967. A revised list of Brazilian scleractinian corals and description of a new species. Postilla, 107, 14 p.Google Scholar
Lamarck, J. B. P. 1801. Système des animaux sans vertèbres. Paris, 432 p.Google Scholar
Lamarck, J. B. P. 1816. Histoire naturelle des animaux sans vertèbres, Volume 2. Paris, 568 p.Google Scholar
Lesueur, C. A. 1821. Déscription de plusieurs animaux appartenant aux polypiers lamellifères de M. le Chev. de Lamarck. Mémoires du Muséum d'Histoire naturelle, 6:271298.Google Scholar
Link, H. F. 1807. Beschreibung der Naturalien-Sammlungen der Universität Rostock, 3:161165.Google Scholar
Linnaeus, C. 1758. Systema Naturae per regnia tria naturae, secundum Classes, Ordines, Genera, Species. Tomus I. Regnum Animale. Holmiae, Editio Decima, Reformata, 824 p.Google Scholar
Linnaeus, C. 1767. Madrepora. Systema Naturae. Holmiae, Editio Duodecima, Reformata, Pt. 2, t. 1, 12721282.Google Scholar
Lyman, T. 1859. On a new species of coral (Astraea decactis) . Proceedings of the Boston Society of Natural History, 6:260263.Google Scholar
Matthai, G. 1928. A monograph of the recent meandroid Astraeidae. Catalogue of the Madreporarian corals in the British Museum (Natural History), 7:1288.Google Scholar
Meeder, J. F. 1987. The paleoecology, petrology and depositional model of the Pliocene Tamiami Formation, southwest Florida (with special reference to corals and reef development). Unpubl. Ph.D. dissertation, University of Miami, Coral Gables, Florida, 748 p.Google Scholar
Milne Edwards, H., and Haime, J. 1848. Recherches sur les polypiers. Quatrième mémoire. Monographie des Astréides. Annales des Sciences Naturelles, Paris, Series 3, 10:209320.Google Scholar
Milne Edwards, H., and Haime, J. 1849a. Mémoire sur les polypiers appartenant à la famille des Oculinides, au groupe intermédiaire des Pseudastréides et à la famille des Fongides (extrait). Academie de la Science, Paris, C. R., 29:6773.Google Scholar
Milne Edwards, H., and Haime, J. 1849b. Recherches sur les polypiers. Quatrième mémoire. Monographie des Astréides. Annales des Sciences Naturelles, Paris, Series 3, 12:95197.Google Scholar
Milne Edwards, H., and Haime, J. 1851. Recherches sur les polypiers. 6me Mémoire. Monographie des Fongides. Annales des Sciences Naturelles, Paris, Series 3, 15:73144.Google Scholar
Müller, P. L. S. 1775. Des Ritters Carl von Linné Königlich Schwedischen Leibarztes vollständiges Natursystem nach der zwölften lateinischen Ausgabe mit einer ausführlichen Erklärung. Sechster Theil, Zweiter Band, Von den Korallen. Nürnberg, p. 672708.Google Scholar
Oken, L. 1815. Lehrbuch der Naturgeschichte. Jena, Theil 3, Zoologie. Abteilung I, Fleischlose Thiere, 850 p.Google Scholar
Ortmann, A. 1890. Die morphologie des Skeletts der Steinkorallen in Beziehung zur Koloniebildung. Zeitschrift für wissenschaftliches Zoologie, Leipzig, 50:278316.Google Scholar
Pallas, P. S. 1766. Elenchus Zoophytorum. Hagae-Comitum, 451 p.Google Scholar
Palmer, R. H. 1928. Fossil and Recent corals and coral reefs of western Mexico. American Philosophical Society Proceedings, 68:2131.Google Scholar
Rathbun, R. 1887. Annotated catalogue of the species of Porites and Synaraea in the U.S. National Museum, with a description of a new species of Porites . Proceedings of the U.S. National Museum, 10:354366.CrossRefGoogle Scholar
Rehberg, H. 1893. Neue und wenig bekannte Korallen. Abhandlungen der Naturwissenschaften Verein, Hamburg, 12:150.Google Scholar
Reuss, A. E. 1864. Die fossilen Foraminiferen, Anthozoen und Bryozoen von Oberberg in Steiermark. Kaiserliche Akademie der Wissenschaft Wien, mathematisch-naturwissenschaftliche Klasse, Denkschriften 23, 38 p.Google Scholar
Scheer, G., and Pillai, C. S. G. 1974. Report on Scleractinia from the Nicobar Islands. Zoologica (Stuttgart), 42:175.Google Scholar
Schweigger, A. F. 1819. Beobachtungen auf naturhistorischen Reisen. Anatomische-physiologische Untersuchungen über Corallen; nebst ein Anhange, Bemerkungen über die Bernstein enthaltend, Berlin, 127 p.Google Scholar
Vaughan, T. W. 1900. The Eocene and lower Oligocene coral faunas of the United states with descriptions of a few doubtfully Cretaceous species. U.S. Geological Survey, Monograph 39, 263 p.CrossRefGoogle Scholar
Vaughan, T. W. 1901. Some fossil corals from the elevated reefs of Curacao, Aruba and Bonaire. Rijks Geologisches Mineralogisches Museum Sammlungen, Leiden, 2:191.Google Scholar
Vaughan, T. W. 1917. The reef-coral fauna of Carrizo Creek, Imperial County, California and its significance. U.S. Geological Survey, Professional Paper 98T:355386.Google Scholar
Vaughan, T. W. 1919. Fossil corals from Central America, Cuba, and Porto Rico with an account of the American Tertiary, Pleistocene, and Recent coral reefs. U.S. National Museum Bulletin, 103:189524.Google Scholar
Vaughan, T. W. 1932. Antillophyllia, a new coral generic name. Journal of the Washington Academy of Science, 22:506510.Google Scholar
Vaughan, T. W., and Hoffmeister, J. E. 1925. New species of fossil corals from the Dominican Republic. Bulletin of the Museum of Comparative Zoology, Harvard College, 67:315326.Google Scholar
Vaughan, T. W., and Hoffmeister, J. E. 1926. Miocene corals from Trinidad. Papers of the Department of Marine Biology, Carnegie Institution of Washington, 23:107132.Google Scholar
Vaughan, T. W., and Wells, J. W. 1943. Revision of the suborders, families, and genera of the Scleractinia. Geological Society of America, Special Paper 104, 363 p.Google Scholar
Verrill, A. E. 1868. Notice of the corals and echinoderms collected by Prof. C. F. Hartt, at the Abrolhos Reefs, Province of Bahia, Brazil, 1867. Connecticut Academy of Arts and Science, Transactions, 1:351359.Google Scholar
Verrill, A. E. 1901. Variations and nomenclature of Bermudian, West Indian, and Brazilian reef corals, with notes on various Indo-Pacific corals. Connecticut Academy of Arts and Sciences, Transactions, 11:63168.Google Scholar
Verrill, A. E. 1902. Notes on corals of the genus Acropora Madrepora (Lam.) with new descriptions and figures of types and several new species. Connecticut Academy of Arts and Science, Transactions, 11:207266.Google Scholar
Weisbord, N. E. 1968. Some late Cenozoic stony corals from northern Venezuela. Bulletins of American Paleontology, 55:1288.Google Scholar
Weisbord, N. E. 1971. Corals from the Chipola and Jackson Bluff Formations of Florida. Florida Bureau of Geology, Geological Bulletin, 53, 100 p.Google Scholar
Weisbord, N. E. 1973. New and little-known corals from the Tampa Formation of Florida; Florida Bureau of Geology, Geological Bulletin, 56, 147 p.Google Scholar
Weisbord, N. E. 1974. Late Cenozoic corals of South Florida. Bulletins of American Paleontology, 66:259543.Google Scholar
Wells, J. W. 1936. The nomenclature and type species of some genera of recent and fossil corals. American Journal of Science, Series 5, 31:97134.CrossRefGoogle Scholar
Wells, J. W. 1973. New and old scleractinian corals from Jamaica. Bulletin of Marine Science, 23:1655.Google Scholar
Wells, J. W., and Lang, J. C. 1973. Systematic list of Jamaican shallow-water Scleractinia. Bulletin of Marine Science, 23:5558.Google Scholar
Yabe, H., and Sugiyama, T. 1933. Notes on three new corals from Japan. Japanese Journal of Geology and Geography, 11:1118.Google Scholar
Zlatarski, V. 1990. Porites colonensis, new species of stony coral (Anthozoa: Scleractinia) off the Caribbean coast of Panama. Proceedings of the Biological Society of Washington, 103:257264.Google Scholar