Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T09:29:16.241Z Has data issue: false hasContentIssue false

Three new tanaid species (Crustacea, Peracarida, Tanaidacea) from the Lower Cretaceous Álava amber in northern Spain

Published online by Cambridge University Press:  14 July 2015

Ronald Vonk
Affiliation:
Zoological Museum Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Mauritskade 57, 1092 AD Amsterdam, The Netherlands,
Frederick R. Schram
Affiliation:
Burke Museum, University of Washington, Seattle,

Extract

Marine crustaceans were not known as inclusions in amber from upper Aptian–middle Albian deposits in Northern Spain. The publication of a photograph of a purported fossil amphipod (Alonso et al., 2000) among many other arthropods promised to be of high interest because the fossil record of the amphipoda does not extend further than Upper Eocene (Schram, 1986; Coleman and Myers, 2000). The Museum of Natural Sciences of Álava in Vitoria-Gasteiz (AMNS), northern Spain, kindly sent us the material with the presumed amphipods, as our intention was to investigate its affinities to other fossil amphipods. The fossil crustaceans of this assemblage were found among 15 orders of insects, spiders, and mites—i.e., mainly terrestrial arthropods.

Type
Paleontological Notes
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, J., Arillo, A., Barrón, E., Corral, J. C., Grimalt, J., López, J. F., López, R., Martínez-Declòs, X., Ortuño, V., Peñalver, E., and Trincão, P. R. 2000. A new fossil resin with biological inclusions in Lower Cretaceous deposits from Álava (northern Spain, Basque-Cantabrian basin). Journal of Paleontology, 74:158178.2.0.CO;2>CrossRefGoogle Scholar
Coleman, C. O. and Myers, A. A. 2000. New Amphipoda from Baltic amber. Polskie Archiwum Hydrobiologii, 47:457464.Google Scholar
Etter, W. 2004. Redescription of Opsipedon gracilis Heer (Crustacea, Tanaidacea) from the Middle Jurassic of northern Switzerland, and the palaeoenvironmental significance of tanaidaceans. Palaeontology, 47:6780.CrossRefGoogle Scholar
Gutu, M. 2004. Regarding the position of the fossil superfamily Cretitanaoidea in tanaidacean systematics (Crustacea: Peracarida). Travaux du Muséum National d'Histoire Naturelle “Grigore Antipa,” 46:2428.Google Scholar
Hannibal, J. T., Budai, T., and Müller, P. 2003. Deepwater Tanaidacea (Crustacea: Neotanaidae) from the Ladinian (Middle Triassic) of Hungary. Abstracts with Program, North-Central Section of Geological Society of America, 2003, Paper no. 22-2.Google Scholar
Hansen, H. J. 1895. Isopoden, Cumaceen und Stomatopoden der Plankton-Expedition. Ergebnisse der im Atlantischen Ozean durchgefürhrten Plankton-Expedition der Humboldt-Stiftung, number 1189:1105.Google Scholar
Heer, O. 1865. Die Urwelt der Schweiz. Schulthess, Zürich, 622 p.Google Scholar
Larsen, K. and Wilson, G. D. F. 2002. Tanaidacean phylogeny, the first step: The superfamily Paratanaidoidea. Journal of Zoological Systematics and Evolutionary Research, 40:205222.CrossRefGoogle Scholar
Latreille, P. A. 1802. Histoire naturelle, générale et particulière des crustacés et des insectes. F. Dufart, Paris, An 12-13 [1803-1804].CrossRefGoogle Scholar
Malzahn, E. 1957. Neue Fossilfunde und vertikale Verbreitung der niederrheinischen Zechsteinfauna in den Bohrungen Kemp 4 und Friedrich Heinrich 57 bei Kamp-Lintfort. Geologisches Jahrbuch, 73:91126.Google Scholar
Malzahn, E. 1965. Eine neue fossile Scherenassel (Ophthalmapseudes friedericianus) aus dem norddeutschen Dogger. Annalen des naturhistorisches Museum in Wien, 68:223235.Google Scholar
Malzahn, E. 1979. Apseudes giganteus — die erste Scherenassel aus der Kreide. Annalen des naturhistorisches Museum in Wien, 82:6781.Google Scholar
Martínez-Delclòs, X., Briggs, D. E. G. and Peñalver, E. 2004. Taphonomy of insects in carbonates and amber. Palaeogeography, Palaeoclimatology, Palaeoecology, 203:1964.CrossRefGoogle Scholar
Peach, B. N. 1882. On some new Crustacea from the Lower Carboniferous rocks Eskdale and Liddesdale. Proceedings of the Royal Society of Edinburgh, 30:7391.CrossRefGoogle Scholar
Polz, H. 2005. Niveotanais brunnensis g. nov. sp. nov. (Crustacea: Tanaidacea: Anthracocaridomorpha) eine fossile Scherenassel aus den Plattenkalken von Brunn. Archaeopterix, 23:5766.Google Scholar
Portero, J. M. and Ramírez Del Pozo, J. 1979. Memoria explicativa de la hoja no. 170 (Haro) del Mapa Geológico de España, segunda serie, E 1:50.000. Madrid. 42 p.Google Scholar
Reiff, E. 1936. Isopoden aus dem Lias Delta Schwabens. Paläontologische Zeitschrift, 18:4990.CrossRefGoogle Scholar
Sachariewa-Kowatschewa, K. and Bachmayer, F. 1965. Eine neue fossile Scherenassel (Ophthalmapseudes acutirostris) aus dem Dogger-Schichten von Bulgarien. Annalen des naturhistorisches Museum in Wien, 68:236240.Google Scholar
Schram, F. R. 1986. Crustacea. Oxford University Press: 1606.Google Scholar
Schram, F. R. 1989. Designation of a new name and type for the Mazon Creek (Pennsylvanian, Francis Creek Shale) tanaidacean. Journal of Paleontology, 63:536.CrossRefGoogle Scholar
Schram, F. R., Sieg, J., and Malzahn, E. 1986. Fossil Tanaidacea. Transactions of the San Diego Society of Natural History, 21:127144.Google Scholar
Sieg, J. 1980. Sind die Dikonophora eine polyphyletische Gruppe? Zoologischer Anzeiger, 205:401416.Google Scholar