Published online by Cambridge University Press: 13 March 2009
A quasi-one-dimensional model for the steady-state flow of a plasma in an ablative discharge capillary is presented for capillaries with non-constant cross- section. It is demonstrated that small modifications of the capillary geometry can lead to significant changes in the plasma exit parameters. In this respect, the possibility of obtaining an extended range of plasma parameters makes this type of ablative capillary a useful source of plasma for a variety of applications. Numerical solution of the equations of the model for the critical-flow case allows evaluation of the main fluid-dynamic and thermodynamic parameters of the plasma inside the capillary and at its exit.