Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T12:07:14.111Z Has data issue: false hasContentIssue false

Comment on ‘Electron acoustic super solitary waves in a magnetized plasma’, J. Plasma Phys. 84, 905840406 (2018)

Published online by Cambridge University Press:  15 February 2019

Frank Verheest*
Affiliation:
Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B–9000 Gent, Belgium School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa
Manfred A. Hellberg
Affiliation:
School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa
*
Email address for correspondence: frank.verheest@ugent.be

Abstract

The plasma model used in a recent paper by Kamalam et al. (J. Plasma Phys., vol. 84, 2018, 905840406) assumes a Boltzmann description for two hot ion species, in the presence of two adiabatic (fluid) electron species, for the study of obliquely propagating acoustic-type nonlinear solitary waves with respect to a static magnetic field. We argue that the assumption of Boltzmann distributions for the hot ions is incorrect, thus invalidating their conclusions, in particular about the possible occurrence of supersolitons in magnetized plasmas.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buti, B. 1980 Nonlinear electron-acoustic waves in a multi-species plasma. J. Plasma Phys. 24, 169180.Google Scholar
Devanandhan, S., Singh, S. V., Lakhina, G. S. & Bharuthram, R. 2012 Electron acoustic waves in a magnetized plasma with kappa distributed ions. Phys. Plasmas 19, 082314.Google Scholar
Ghosh, S. S., Pickett, J. S., Lakhina, G. S., Winningham, J. D., Lavraud, B. & Décráu, P. M. E. 2008 Parametric analysis of positive amplitude electron acoustic solitary waves in a magnetized plasma and its application to boundary layers. J. Geophys. Res. 113, A06218.Google Scholar
Hellberg, M. A., Verheest, F. & Mace, R. L. 2018 The effects of finite mass, adiabaticity, and isothermality in nonlinear plasma wave studies. Phys. Plasmas 25, 032303.Google Scholar
Kamalam, T., Steffy, S. V. & Ghosh, S. S. 2018 Electron acoustic super solitary waves in a magnetized plasma. J. Plasma Phys. 84, 905840406.Google Scholar
Kamalam, T., Steffy, S. V. & Ghosh, S. S. 2019 Corrigendum: Electron acoustic super solitary waves in a magnetized plasma [Journal of Plasma Physics 84, 905840406 (2018)]. J. Plasma Phys. 85, 945850102.Google Scholar
Verheest, F. 2009 Oblique propagation of solitary electrostatic waves in multispecies plasmas. J. Phys. A: Math. Theor. 42, 285501.Google Scholar
Verheest, F., Cattaert, T., Lakhina, G. S. & Singh, S. V. 2004 Gas-dynamic description of electrostatic solitons. J. Plasma Phys. 70, 237250.Google Scholar
Verheest, F., Hellberg, M. A. & Lakhina, G. S. 2007 Necessary conditions for the generation of acoustic solitons in magnetospheric and space plasmas with hot ions. Astrophys. Space Sci. Trans. 3, 1520.Google Scholar