Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T21:43:25.511Z Has data issue: false hasContentIssue false

Guiding-centre motion in the framework of Hamilton–Jacobi theory

Published online by Cambridge University Press:  13 March 2009

P. Gratreau
Affiliation:
23 Rue des Cordelières, 75013 Paris, France
B. V. Robouch
Affiliation:
Associazione EURATOM-ENEA sulla Fusione, CRE Frascati, C.P. 65-00044 Frascati, Rome, Italy

Abstract

Following renewed interest in the guiding-centre problem, we propose an alternative to previous approaches. It consists essentially in demonstrating the existence of a representative simple model for which the problem is rigorously solved in the Hamilton–Jacobi framework. It is shown that a perturbation method allows the extension of the model to more realistic cases. A further extension to cover both magnetic-mirror configurations and tokamaks can be achieved.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Catto, P. J. 1978 Plasma Phys. 20, 719.CrossRefGoogle Scholar
Dubin, D. H. E., Krommes, J. A., Oberman, C. & Lee, W. W. 1983 Phys. Fluids 26, 3524.Google Scholar
Goldstein, H. 1980 Classical Mechanics, 2nd edn.Addison-Wesley.Google Scholar
Gratreau, P. 1986 ENEA Report RT/FUS/86/15. Ass. EURATOM-ENEA, Frascati, Italy.Google Scholar
Gratreau, P. & Robouch, B. V. 1992 ENEA Report RT/NUCL/92/16 (1993). Ass. EURATOM-ENEA, C.P. 65, Frascati, Italy.Google Scholar
Landau, L. & Lifschitz, E. 1976 Mechanics, 3rd edn.Pergamon.Google Scholar
Lashmore-Davies, C. N. & Dendy, R. O. 1989 Phys. Rev. Lett. 62, 1982.Google Scholar
Lee, W. W. 1983 Phys. Fluids 26, 556.Google Scholar
Lee, W. W. 1987 J. Comput. Phys. 72, 243.Google Scholar
Littlejohn, R. G. 1979 J. Math. Phys. 20, 2445.Google Scholar
Littlejohn, R. G. 1981 Phys. Fluids 24, 1730.Google Scholar
Martin, P. & Haines, M. 1991 Phys. Fluids B 3, 2939.Google Scholar
Meiss, J. D. & Hazeltine, R. D. 1990 Phys. Fluids B 2, 2563.Google Scholar
Rutherford, P. H. & Frieman, E. A. 1968 Phys. Fluids 11, 569.Google Scholar
Störmer, C. 1907 Arch. Sci. Phys. Nat. GenÈve 24, 687.Google Scholar
Sydora, R. D. 1990 Phys. Fluids B 2, 1455.Google Scholar
Taylor, J. B. & Hastie, R. J. 1968 Plasma Phys. 10, 479.CrossRefGoogle Scholar
Vernon, Wong H. 1982 Phys. Fluids 25, 1811.Google Scholar
Weyson, B. & Balescu, R. 1986 J. Plasma Phys. 35, 449.Google Scholar