Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T12:06:07.894Z Has data issue: false hasContentIssue false

Influence of non-monochromaticity on zonal-flow generation by magnetized Rossby waves in the ionospheric E-layer

Published online by Cambridge University Press:  01 June 2009

T. D. KALADZE
Affiliation:
Physics Department, GC University, Lahore 54000, Pakistan I. Vekua Institute of Applied Mathematics of Tbilisi State University, 2 University Str., 0143 Tbilisi, Georgia (tamaz_kaladze@yahoo.com)
H. A. SHAH
Affiliation:
Physics Department, GC University, Lahore 54000, Pakistan
G. MURTAZA
Affiliation:
Salam Chair, GC University, Lahore 54000, Pakistan
L. V. TSAMALASHVILI
Affiliation:
I. Vekua Institute of Applied Mathematics of Tbilisi State University, 2 University Str., 0143 Tbilisi, Georgia (tamaz_kaladze@yahoo.com)
M. SHAD
Affiliation:
Physics Department, GC University, Lahore 54000, Pakistan
G. V. JANDIERI
Affiliation:
Physics Department, Georgian Technical University, 77 Kostava str., 0175, Tbilisi, Georgia

Abstract

The influence of non-monochromaticity on low-frequency, large-scale zonal-flow nonlinear generation by small-scale magnetized Rossby (MR) waves in the Earth's ionospheric E-layer is considered. The modified parametric approach is used with an arbitrary spectrum of primary modes. It is shown that the broadening of the wave packet spectrum of pump MR waves leads to a resonant interaction with a growth rate of the order of the monochromatic case. In the case when zonal-flow generation by MR modes is prohibited by the Lighthill stability criterion, the so-called two-stream-like mechanism for the generation of sheared zonal flows by finite-amplitude MR waves in the ionospheric E-layer is possible. The growth rates of zonal-flow instabilities and the conditions for driving them are determined. The present theory can be used for the interpretation of the observations of Rossby-type waves in the Earth's ionosphere and in laboratory experiments.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Busse, F. H. 1994 Convection driven zonal flows and vortices in the major planets. Chaos 4, 123134.CrossRefGoogle ScholarPubMed
Diamond, P. H., Itoh, S.-I., Itoh, K. and Hahm, T. S. 2005 Zonal flows in plasma – a review. Plasma Phys. Control. Fusion 47, R35R161.Google Scholar
Kaladze, T. D. 1998 Nonlinear vortical structures in the earth's ionosphere. Phys. Scripta T75, 153155.CrossRefGoogle Scholar
Kaladze, T. D. 1999 Magnetized Rossby waves in the earth's ionosphere. Plasma Phys. Reports 25, 284287.Google Scholar
Kaladze, T. D., Aburjania, G. D., Kharshiladze, O. A., Horton, W. and Kim, Y.-H. 2004 Theory of magnetized Rossby waves in the ionospheric E layer. J. Geophys. Res. 109, A05302, doi: 10.1029/2003JA010049.Google Scholar
Kaladze, T. D., Pokhotelov, O. A., Sagdeev, R. Z., Stenflo, L. and Shukla, P. K. 2003. Planetary electromagnetic waves in the ionospheric E-layer. J. Atmos. Solar-Terr. Phys. 65, 757764.Google Scholar
Kaladze, T. D. and Tsamalashvili, L. V. 1997 Solitary dipole vortices in the earth's ionosphere. Phys. Lett. A 232, 269274.Google Scholar
Kaladze, T. D., Wu, D. J., Pokhotelov, O. A., Sagdeev, R. Z., Stenflo, L. and Shukla, P. K. 2007a Rossby-wave driven zonal flows in the ionospheric E-layer. J. Plasma Phys. 73, 131140.Google Scholar
Kaladze, T. D., Wu, D. J., Tsamalashvili, L. V. and Jandieri, G. V. 2007b Localized magnetized Rossby structures under zonal shear flow in the ionospheric E-layer. Phys. Lett. A 365, 140143.CrossRefGoogle Scholar
Lawrence, A. R. and Jarvis, M. J. 2003 Simultaneous observations of planetary waves from 30 to 220 km. J. Atm. Solar-Terr. Phys. 65, 765777.Google Scholar
Lighthill, M. J. 1965 Group velocity. J. Inst. Math. Appl. 1, 128.Google Scholar
Malkov, M. A., Diamond, P. H. and Smolyakov, A. 2001 On the stability of drift wave spectra with respect to zonal flow excitation. Phys. Plasmas 8, 15531558.Google Scholar
Mikhailovskii, A. B., Kovalishen, E. A., Shirokov, M. S., Smolyakov, A. I., Tsypin, V. S. and Galvão, R. M. O. 2007 Generation of zonal flows by kinetic Alfvén waves. Plasma Phys. Reports 33, 117129.Google Scholar
Mikhailovskii, A. B., Shirokov, M. S., Smolyakov, A. I. and Tsypin, V. S. 2006a Two-stream-like mechanism of zonal-flow generation by Rossby waves in a shallow rotating fluid. JETP Lett. 84, 7678.CrossRefGoogle Scholar
Mikhailovskii, A. B., Smolyakov, A. I., Kovalishen, E. A., Shirokov, M. S., Tsypin, V. S., Botov, P. V. and Galvão, R. M. O. 2006b Zonal flows generated by small-scale drifty-Alfven modes. Phys. Plasmas 13, 042507, doi: 10.1063/1.2192755.CrossRefGoogle Scholar
Onishchenko, O. G., Pokhotelov, O. A., Sagdeev, R. Z., Shukla, P. K. and Stenflo, L. 2004 Generation of zonal flows by Rossby waves in the atmosphere. Nonlin. Proc. Geophys. 11, 241244.Google Scholar
Petviashvili, V. I. and Pokhotelov, O. A. 1992 Solitary Waves in Plasmas and in the Atmosphere. Reading, PA: Gordon and Breach Science Publishers.Google Scholar
Pokhotelov, O. A., Kaladze, T. D., Shukla, P. K. and Stenflo, L. 2001 Three-dimensional solitary vortex structures in the upper atmosphere. Phys. Scripta 64, 245252.Google Scholar
Pokhotelov, O. A., Stenflo, L. and Shukla, P. K. 1996 Nonlinear structures in the earth's magnetosphere and atmosphere. Plasma Phys. Reports 22, 852863.Google Scholar
Rasmussen, J. J., Garcia, O. E., Naulin, V., Nielsen, A. H., Stenum, B., Van Bokhoven, L. J. A. and Delaux, S. 2006 Generation of zonal flows in rotating fluids and magnetized plasmas. Phys. Scripta T122, 4451.Google Scholar
Rhines, P. B. 1994 Jets. Chaos 4, 313340.CrossRefGoogle ScholarPubMed
Shukla, P. K. and Stenflo, L. 2002 Nonlinear interactions between drift waves and zonal flows. Eur. Phys. J. D 20, 103106.Google Scholar
Shukla, P. K. and Stenflo, L. 2003 Generation of zonal flows by Rossby waves. Phys. Lett. A 307, 154157.Google Scholar
Shukla, P. K., Yu, M. Y. and Rahman, H. U. 1981 Excitation of convective cells by drift waves. Phys. Rev. A 23, 321324.Google Scholar
Shukla, P. K., Yu, M. Y., Rahman, H. U. and Spatschek, K. H. 1984 Nonlinear convective motion in plasmas. Phys. Rep. 105, 227328.Google Scholar
Smolyakov, A. I., Diamond, P. H. and Shevchenko, V. I. 2000 Zonal flow generation by parametric instability in magnetized plasmas and geostrophic fluids. Phys. Plasmas 7, 13491351.Google Scholar
Terry, P. W. 2000 Suppression of turbulence and transport by sheared flow. Rev. Mod. Phys. 72, 109165.CrossRefGoogle Scholar