Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T03:24:53.317Z Has data issue: false hasContentIssue false

Kelvin-Helmholtz instability in dusty plasma medium: Fluid and particle approach

Published online by Cambridge University Press:  14 July 2014

Sanat Tiwari*
Affiliation:
Institute for Plasma Research, Bhat Gandhinagar- 382 428, India
Vikram Dharodi
Affiliation:
Institute for Plasma Research, Bhat Gandhinagar- 382 428, India
Amita Das
Affiliation:
Institute for Plasma Research, Bhat Gandhinagar- 382 428, India
Predhiman Kaw
Affiliation:
Institute for Plasma Research, Bhat Gandhinagar- 382 428, India
Abhijit Sen
Affiliation:
Institute for Plasma Research, Bhat Gandhinagar- 382 428, India
*
Email address for correspondence: sanat@ipr.res.in

Abstract

The Kelvin-Helmholtz (KH) instability is studied in a two dimensional strongly coupled dusty plasma medium using a fluid approach as well as through a molecular dynamic (MD) simulation. For the fluid description the generalized hydrodynamic (GH) model which treats the strongly coupled dusty plasma as a visco-elastic fluid is adopted. For the MD studies the ensemble of particles are assumed to interact through a Yukawa potential. Both the approaches predict a stabilization of the KH growth rate with an increase in the strong coupling parameter. The present study also delineates the temporal evolution and the interaction of transverse shear waves with the collective dynamics of the dusty plasma medium within the framework of both these approaches.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashwin, J and Ganesh, R 2010 Kelvin Helmholtz instability in strongly coupled Yukawa liquids. Phys. Rev. Lett. 215003 (May), 14.Google Scholar
Banerjee, D., Janaki, M. and Chakrabarti, N. 2012 Shear flow instability in a strongly coupled dusty plasma. Phys. Rev. E 85 (6), 17.CrossRefGoogle Scholar
Bhattacharjee, S. and Das, N. 2013 Ion-wake-induced anomaly of dust lattice mode in the presence of an external magnetic field. Phys. Rev. E 88, 043106.Google Scholar
Chu, J. H. and Lin, I. 1994 Direct observation of coulomb crystals and liquids in strongly coupled rf dusty plasmas. Phys. Rev. Lett. 72, 40094012.Google Scholar
Donkó, Z. and Hartmann, P. 2008 Shear viscosity of strongly coupled Yukawa liquids. Physical Review E 78, 026408.Google Scholar
Frenkel, J. 1955 Kinetic Theory Of Liquids. Dover Publications.Google Scholar
Goree, J., Morfill, G. E., Tsytovich, V. N. and Vladimirov, S. V. 1999 Theory of dust voids in plasmas. Phys. Rev. E 59, 70557067.Google Scholar
Harding, E. C., et al. 2009 Observation of a kelvin-helmholtz instability in a high-energy-density plasma on the omega laser. Phys. Rev. Lett. 103, 045005.CrossRefGoogle Scholar
Jain, N., Das, A., Kaw, P. and Sengupta, S. 2003 Nonlinear electron magnetohydrodynamic simulations of sausage-like instability of current channels. Phys. Plasmas 10 (1), 29.Google Scholar
Kalman, G. J., Golden, K. I., Donko, Z. and Hartmann, P. 2005 The quasilocalized charge approximation. J. Phys.: Conf. Ser. 11 (1), 254.Google Scholar
Kaw, P. K. and Sen, A. 1998 Low frequency modes in strongly coupled dusty plasmas. Phys. Plasmas 5 (10), 35523559.CrossRefGoogle Scholar
Merlino, R. L., Barkan, A., Thompson, C. and D'Angelo, N. 1998 Laboratory studies of waves and instabilities in dusty plasmas. Phys. Plasmas 5 (5), 16071614.Google Scholar
Miura, A. 1999 Self-organization in the two-dimensional kelvin-helmholtz instability. Phys. Rev. Lett. 83 (8), 15861589.Google Scholar
Murillo, M. S. 2008 Viscosity estimates of liquid metals and warm dense matter using the Yukawa reference system. High Energy Density Phys. 4, 4957.Google Scholar
Ofman, L. and Thompson, B. J. 2011 Sdo/aia observation of kelvin-helmholtz instability in the solar corona. Astrophys. J. Lett. 734 (1), L11.Google Scholar
Plimpton, S. 1995 Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117 (1), 119.Google Scholar
Samsonov, D., Goree, J., Thomas, H. and Morfill, G. 2000 Mach cone shocks in a two-dimensional Yukawa solid using a complex plasma. Phys. Rev. E 61 (5B), 55575572.Google Scholar
Schwabe, M., Rubin-Zuzic, M., Zhdanov, S., Ivlev, A. V., Thomas, H. M. and Morfill, G. E. 2009 Formation of bubbles, blobs, and surface cusps in complex plasmas. Phys. Rev. Lett. 102 (25), 255005.Google Scholar
Sen, A. K. 1964 Effect of compressibility on Kelvin-Helmholtz instability in a plasma. Phys. Fluids 7, 1293.CrossRefGoogle Scholar
Teng, L.-W., Chang, M.-C., Tseng, Y.-P. and Lin, I. 2009 Wave-particle dynamics of wave breaking in the self-excited dust acoustic wave. Phys. Rev. Lett. 103 (2424), 14.CrossRefGoogle ScholarPubMed
Thomas, H. M. and Morfill, G. E. 1996 Melting dynamics of a plasma crystal. Nature 379, 806809.CrossRefGoogle Scholar
Thomson, W. (Lord, Kelvin) 1871 Hydrokinetic solutions and observations. Phil. Mag. 42 (4), 362377.Google Scholar
Tiwari, S. K., Das, A., Angom, D., Patel, B. G. and Kaw, P. 2012a Kelvin-helmholtz instability in a strongly coupled dusty plasma medium. Phys. Plasmas 19 (7), 073703.CrossRefGoogle Scholar
Tiwari, S. K., Das, A., Kaw, P. and Sen, A. 2012b Kelvin–helmholtz instability in a weakly coupled dust fluid. Phys. Plasmas 19 (2), 023703.Google Scholar
Tiwari, S. K., Dharodi, V. S., Das, A., Patel, B. G. and Kaw, P. 2014 Evolution of sheared flow structure in visco-elastic fluids. AIP Conf. Proc. 1582 (1), 5565.CrossRefGoogle Scholar
Wiechen, H. M. 2006 Simulations of Kelvin-Helmholtz modes in the dusty plasma environment of noctilucent clouds. J. Plasma Phys. 73 (05), 649658.Google Scholar