Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-15T03:41:47.813Z Has data issue: false hasContentIssue false

Large-amplitude disturbances caused by ion-rich sheath motion

Published online by Cambridge University Press:  13 March 2009

A. J. Coates
Affiliation:
Department of Engineering Science, Parks Road, Oxford 0X1 3PJ
P. D. Edgley
Affiliation:
Department of Engineering Science, Parks Road, Oxford 0X1 3PJ
J. E. Allen
Affiliation:
Department of Engineering Science, Parks Road, Oxford 0X1 3PJ

Abstract

We present the first detailed experimental study of the plasma response to movement of a plane ion-rich sheath. The results show clearly that ion rarefaction waves are associated with sheath expansion while ion enhancement (‘compressive’) waves are formed on sheath collapse. The data are compared successfully with a nonlinear theory which includes the presence of a presheath prior to the sheath motion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, J. E. and Andrews, J. G. 1970 J. Plasma Phys. 4, 187.CrossRefGoogle Scholar
Andrews, J. G. 1971 Phys. Fluids, 14, 129.CrossRefGoogle Scholar
Andrews, J. G. & Shrapnel, A. J. 1972 Phys. Fluids, 15, 2271.CrossRefGoogle Scholar
Andrews, J. G. & Varey, R. H. 1971 Phys. Fluids, 14, 339.Google Scholar
Armstrong, R. J., Weber, W. J. & Trulsen, J. 1979 Phys. Lett. 74A, 319.CrossRefGoogle Scholar
Bohm, D. 1949 The Characteristics of Electrical Discharges in Magnetic Fields (ed. Guthrie, A. and Wakerling, R. K.), ch. 3. McGraw-Hill.Google Scholar
Braithwaite, N. St J. & Wickens, L. M. 1983 J. Plasma Phys. 30, 133.CrossRefGoogle Scholar
Chester, J. K. 1970 J. Sci. Tech. 37, 2.Google Scholar
Cippola, J. W. & Silevitch, M. B. 1981 J. Plasma Phys. 25, 373.CrossRefGoogle Scholar
Coates, A. J. 1982 D.Phil. Thesis, University of Oxford.Google Scholar
Druyvesteyn, M. J. 1930 Z. Phys. 64, 781.CrossRefGoogle Scholar
Jones, W. D., Lee, A., Gleman, S. M. & Doucet, H. J. 1975 Phys. Rev. Lett. 35, 1349.CrossRefGoogle Scholar
Kaminsky, M. 1965 Atomic and Ionic Impact Phenomena on Metal Surfaces. Springer.CrossRefGoogle Scholar
Kerkdijk, C. B., Kistemaker, J. & Saris, F. W. 1976 Proceedings of 8th International Summer School on Physics of Ionized Gases, Dubrovnic, Yugoslavia, p. 357.Google Scholar
Leung, K. N., Samec, T. K. & Lamm, A. 1975 Phys. Lett. 51A, 490.CrossRefGoogle Scholar
Limpaecher, R. & Mackenzie, K. R. 1973 Rev. Sci. Inst. 44, 726.CrossRefGoogle Scholar
Olesen, N. L. & Found, C. G. 1949 J. Appl. Phys. 20, 416.Google Scholar
Prewett, P. D. 1974 D.Phil. Thesis, University of Oxford.Google Scholar
Smith, J. R., Hershkowitz, N. & Coakley, P. 1979 Rev. Sci. Inst. 50, 210.Google Scholar
Swift, J. D. & Schwar, M. J. R. 1970 Electrical Probes for Plasma Diagnostics, p. 80. Iliffe.Google Scholar
Wickens, L. M., Braithwaite, N. St J. & Coates, A. J. 1982 Phys. Lett. 88A, 147.Google Scholar
Widner, M., Alexeff, I., Jones, W. D. & Lonngren, K. E. 1970 Phys. Fluids, 13, 2532.Google Scholar