Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T21:32:34.031Z Has data issue: false hasContentIssue false

A model for precursor structure in supercritical perpendicular, collisionless shock waves

Published online by Cambridge University Press:  13 March 2009

D. Sherwell
Affiliation:
Atomic Energy Board, Private Bag X256, Pretoria, South Africa
R. A. Cairns
Affiliation:
Department of Applied Mathematics, University of St Andrews, Fife, Scotland

Abstract

Magnetosonic solitons may be given smooth increasing profiles by assuming the presence within the wave of a current distribution Jy(x) of trapped ions perpendicular to Bz(x) and the wave velocity Vx. Suitable ions are found immediately upstream of perpendicular, collisionless shock waves and these are coincident with the often observed ‘foot’ in magnetic field profiles of moderately supercritical shocks. By modelling Jy(x) we apply the theory to previous experiments where Jy(x) is observed, and are able to reproduce reasonably, and thus explain, the profiles in the foot. Insight into a number of features of fast shocks is obtained.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Auer, P. L., Kilb, R. W. & Crevier, W. F. 1971 J. Geophys. Res. 76, 2927.CrossRefGoogle Scholar
Biskamp, D. 1973 Nucl. Fusion, 13, 719.CrossRefGoogle Scholar
Biskakp, D. & Welter, H. 1972 Nucl. Fusion, 12, 663.CrossRefGoogle Scholar
Cairns, R. A. 1972 Phys. Lett. 38 A, 445.CrossRefGoogle Scholar
Eselevich, V. G., Es'kov, A. G., Kurtmullaev, R. Kh. & Malutyn, A. I. 1971 Soviet Phys. JETP, 33 1120.Google Scholar
Fredrecks, R. W., Crook, G. M., Kennel, C. F., Green, I. M. & Scarf, F. L. 1970 J. Geophys. Res. 75, 3751.CrossRefGoogle Scholar
Hintz, E. 1969 Plasma Physics and Controlled Nuclear Fusion Research, vol 1, p. 69. IAEA.Google Scholar
Kornherr, M. 1970. Z. Physik. 233, 37.CrossRefGoogle Scholar
Lelllhacker, M., Kornherr, M., Niedermeyer, H., Steuer, K. H. & Chodura, R. 1971 Plasma Physics and Controlled Nuclear Fusion Research, vol. 3, p. 265. IAEA.Google Scholar
Montgomery, D. & Joyce, G. 1969 J. Plasma Phys. 3, 1.CrossRefGoogle Scholar
Montgomery, M. D., Asbridge, J. R. & Bame, S. J. 1970 J. Geophys. Res. 75, 1217.CrossRefGoogle Scholar
Morse, D. L., Destler, W. W. & Auer, P. L.Phys. Rev. Lett. 28, 13.CrossRefGoogle Scholar
Neugebauer, M. 1970 J. Geophys. Res. 75, 717.CrossRefGoogle Scholar
Paul, J. W. M., Holmes, L.S., Parkinson, M. J. & Sheffield, J. 1965 Nature, 208, 133.CrossRefGoogle Scholar
Phillips, P. E. & Robson, A. E. 1972 Phys. Rev. Lett. 29, 154.CrossRefGoogle Scholar
Sagdeev, R. Z. 1966 Rev. Plasma Phys. 4, 23.Google Scholar
Sherwell, D. & Cairns, R. A. 1977 J. Plasma Phys. 17, 265.CrossRefGoogle Scholar
Tidman, D. A. & Krall, N. A. 1971 Shock Waves in Collisionless Plasma. Wiley-Interscience.Google Scholar
Woods, L. G., 1969 Plasma Phys. 11 967.CrossRefGoogle Scholar