Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T11:07:55.849Z Has data issue: false hasContentIssue false

Nanoparticles in direct-current discharges: Growth and electrostatic coupling

Published online by Cambridge University Press:  25 July 2014

Kishor Kumar K.
Affiliation:
Laboratoire de Physique des Interactions Ioniques et Moléculaires, CNRS, Aix-Marseille Université, Marseille, France
L. Couëdel
Affiliation:
Laboratoire de Physique des Interactions Ioniques et Moléculaires, CNRS, Aix-Marseille Université, Marseille, France
C. Arnas*
Affiliation:
Laboratoire de Physique des Interactions Ioniques et Moléculaires, CNRS, Aix-Marseille Université, Marseille, France
*
Email address for correspondence: cecile.arnas@univ-amu.fr

Abstract

The formation of nanoparticles from the sputtering of graphite and tungsten cathodes in direct-current discharges is investigated. The successive phases of growth present specificities according to the cathode material. The evolution of the discharge and plasma parameters during the growth phases accounts for the nanoparticle-plasma electrostatic coupling. This evolution also presents strong differences as a function of the cathode material. Features characterising each case are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annaratone, B M, Elskens, Y, Arnas, C, Antonova, T, Thomas, H. M. and Morfill, G. E. 2009 Agglomeration of mesoscopic particles in plasma. New J. Phys. 11 (10), 103013.Google Scholar
Arnas, C., Michau, A., Lombardi, G., Couëdel, L. and Kumar, K. Kishor 2013 Effects of the growth and the charge of carbon nanoparticles on dc discharges. Phys. Plasmas 20, 013705.CrossRefGoogle Scholar
Arnas, C. and Mouberi, A. A. 2009 Thermal balance of carbon nanoparticles in sputtering discharges. J. Appli. Phys. 105 (6), 063301.CrossRefGoogle Scholar
Boufendi, L., Plain, A., Blondeau, J. Ph., Bouchoule, A., Laure, C. and Toogood, M. 1992 Measurements of particle size kinetics from nanometer to micrometer scale in a low-pressure argon-silane radio-frequency discharge. Appl. Phys. Lett. 60, 169.Google Scholar
Cavarroc, M., Mikikian, M., Tessier, Y. and Boufendi, L. 2008 Successive generations of dust in complex plasmas: A cyclic phenomenon in the void region. Phys. Rev. Lett. 100 (4), 045001.Google Scholar
Deschenaux, Ch, Affolter, A, Magni, D., Hollenstein, Ch and Fayet, P. 1999 Investigations of ch 4, c 2 h 2 and c 2 h 4 dusty rf plasmas by means of ftir absorption spectroscopy and mass spectrometry. J. Phys. D: App. Phys. 32 (15), 1876.Google Scholar
Dominique, C. and Arnas, C. 2007 Cathode sputtering and the resulting formation of carbon nanometer-size dust. J. Appl. Phys. 101 (12), 123304.Google Scholar
Ganguly, B., Garscadden, A., Williams, J. and Haaland, P. 1993 Growth and morphology of carbon grains. J. Vac. Sci. Technol. A 11 (4), 11191125.Google Scholar
Géraud-Grenier, I., Massereau-Guilbaud, V. & Plain, A. 2004 Characterization of particulates and coatings created in a 13.56 MHz radiofrequency methane plasma. Surf. Coat. Technol. 187 (2–3), 336342.Google Scholar
Jellum, G. M. and Graves, D. B. 1990 Particulates in aluminum sputtering discharges. J. Appl. Phys. 67 (10), 64906496.Google Scholar
Kumar, K. Kishor, Couëdel, L. & Arnas, C. 2013 Growth of tungsten nanoparticles in direct-current argon glow discharges. Phys. Plasmas 20 (4), 043707.Google Scholar
Kovačević, E., Stefanović, I., Berndt, J., Pendleton, Y. J. and Winter, J. 2005 A candidate analog for carbonaceous interstellar dust: Formation by reactive plasma polymerization. Astrophys. J. 623 (1), 242.CrossRefGoogle Scholar
Matsoukas, T. 1997 The coagulation rate of charged aerosols in ionized gases. J. Colloid. Interface Sci. 187, 474483.CrossRefGoogle ScholarPubMed
Mikikian, M., Cavarroc, M., Couëdel, L., Tessier, Y. and Boufendi, L. 2010 Dust particles in low-pressure plasmas: Formation and induced phenomena. Pure Appl. Chem. 82, 1273.Google Scholar
Praburam, G. and Goree, J. 1995 Cosmic dust synthesis by accretion and coagulation. Astrophys. J. 441, 830.Google Scholar
Samsonov, D. and Goree, J. 1999a Instabilities in a dusty plasma with ion drag and ionization. Phys. Rev. E 59, 1047.CrossRefGoogle Scholar
Samsonov, D. and Goree, J. 1999b Particle growth in a sputerring discharge. J. Vac. Sci. Technol. A 17 (5), 2835.Google Scholar
Watanabe, Y. 2006 Formation and behaviour of nano/micro-particles in low pressure plasmas. J. Phys. D: Appl. Phys. 39 (19), R329.Google Scholar
Zeinert, A., Arnas, C., Dominique, C. and Mouberi, A. 2008 Optical properties of carbonaceous nanoparticles produced in sputtering discharges. J. Vac. Sci. Technol. A 26 (6), 14501454.Google Scholar