Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T21:12:31.056Z Has data issue: false hasContentIssue false

On the stability of the screw pinch in the CGL model

Published online by Cambridge University Press:  13 March 2009

Krishna M. Srivastava
Affiliation:
Institut für Plasmaphysik der Kernforschungsanlage JülichGmbH Association EURATOM-KFA
F. Waelbroeck
Affiliation:
Institut für Plasmaphysik der Kernforschungsanlage JülichGmbH Association EURATOM-KFA

Abstract

We have investigated the stability of the screw pinch with the help of the double adiabatic (CGL) equations including the finite Larmor radius effects through the anisotropic pressure tensor. The calculations are approximate, with FLR treated as a first-order correction to the ideal plasma equations. The dispersion relation has been solved for various values of R2 = p∥/p⊥ and α for the rale and imaginary part of the frequency (ω = ωR ± iωI) in three particular cases: (a) μ = 0, the θ-pinch, (b) μ = ∞, the Z-pinch, (c) μ = -α/m, field distubances parallel to the equilibrium field. Here μ is the pitch of the magnetic field in the pressureless plasma surrounding the main column, α is the wave number, m is the azimuthal number, p∥ and p⊥ are plasma pressures along and perpendicular to the magnetic field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bobeldijk, C., Van, Heijingen R. J. J., Van, Der Laan P. C. T.Ornstein, L. Th. M., Schuurman, W. & De, Vries R. F.. 1968 Proc. 3nd Conf. on Plasma Physics and Controlled Nuclear Fusion Res., Novosibirsk.Google Scholar
Frieman, E., Davidson, R. & Langdon, B. 1966 phys. Fluids, 9, 1574.Google Scholar
Jukes, J. D. 1964 Phys. Fluids 7, 52.CrossRefGoogle Scholar
Kennel, C. F. & Greene, J. M. 1966 Ann. Phys. 38, 63.Google Scholar
Kruskal, M. D. & Tuck, J. L. 1958 Proc. Roy. Soc. Lond. A 245, 222.Google Scholar
Macmahon, A. 1965 Phys. Fluids 8, 1840.CrossRefGoogle Scholar
Roberts, K. V. & Taylor, J. B. 1962 Phys. Rev. Lett. 8, 197.CrossRefGoogle Scholar
Rosenbluth, M. N., Krall, N. & Rostoker, N. 1962 Nucl. Fusion (1), 143.Google Scholar
Schuurman, W., Bobeldijk, C. & De, Vries R. F. 1969 Plasma Phys. 11, 495.CrossRefGoogle Scholar
Shafranov, V. D. 1959 Plasma Physics and Problems of Controlled Thermonuclear Reactions, vol. 2, p. 197. Pergamon Press.Google Scholar
Sisson, A. E. & Yu, C. P. 1969 J. Plasma Phys. 3, 691.CrossRefGoogle Scholar
Srivastava, K. M. 1974 J. Plasma Phys. 12, 33.Google Scholar
Srivastava, K. M. 1975 Astron. and Astrophys. 39, 345.Google Scholar
Srivastava, K. M. 1976 Astron. and Astrophys.Google Scholar
Tayler, R. J. 1957 Proc. Phys. Soc. B 70, 31.CrossRefGoogle Scholar
Wright, R. J.Pott, D. F. R. & Haines, M. G. (to be published).Google Scholar