Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T03:20:15.244Z Has data issue: false hasContentIssue false

Phase-space description of plasma waves. Part 1. Linear theory

Published online by Cambridge University Press:  13 March 2009

T. Biro
Affiliation:
Swedish Institute of Space Physics, University of Umeå, S-901 87 UMEÅ, Sweden
K. Rönnmark
Affiliation:
Swedish Institute of Space Physics, University of Umeå, S-901 87 UMEÅ, Sweden

Abstract

We develop an (r, k) phase-space description of waves in plasmas by introducing Gaussian window functions to separate short-scale oscillations from long-scale modulations of the wave fields and variations in the plasma parameters. To obtain a wave equation that unambiguously separates conservative dynamics from dissipation in an inhomogeneous and time-varying background plasma, we first discuss the proper form of the current response function. In analogy with the particle distribution function f(v, r, t), we introduce a wave density N(k, r, t) on phase space. This function is proved to satisfy a simple continuity equation. Dissipation is also included, and this allows us to describe the damping or growth of wave density along rays. Problems involving geometric optics of continuous media often appear simpler when viewed in phase space, since the flow of N in phase space is incompressible.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bekefi, G. 1966 Radiation Processes in Plasmas. Wiley.Google Scholar
Bernstein, I. B. & Friedland, L. 1983 Handbook of Plasma Physics, vol. 1 (ed. Galeev, A. A. & Sudan, R. N.), p. 367. North-Holland.Google Scholar
Beskin, V. S., Gurevich, A. V. & Istomin, Y. I. 1987 Soviet Phys. JETP 65, 715.Google Scholar
Brambilla, M. & Cardinali, A. 1982 Plasma Phys. 24, 1187.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. Academic.Google Scholar
Feynman, R. P. 1972 Statistical Mechanics. Addison-Wesley.Google Scholar
Hasegawa, A. & Sato, T. 1989 Space Plasma Physics 1: Stationary Processes. Springer.CrossRefGoogle Scholar
Ichimaru, S. 1973 Basic Principles of Plasma Physics. Addison-Wesley.Google Scholar
Larsson, J. 1989 J. Plasma Phys. 42, 479.CrossRefGoogle Scholar
Kadomtsev, B. B. 1965 Plasma Turbulence. Academic.Google Scholar
McDonald, S. W. 1988 Phys. Rep. 158, 337.CrossRefGoogle Scholar
McDonald, S. W. & Kaufman, A. N. 1985 Phys. Rev. A 32, 1708.CrossRefGoogle Scholar
Machabeli, G. Z. 1991 Plasma Phys. Contr. Fusion 33, 1227.CrossRefGoogle Scholar
Melrose, D. B. 1980 Plasma Astrophysics, vol. 1. Gordon and Breach.Google Scholar
Nambu, M. 1989 Plasma Phys. Contr. Fusion 31, 143.CrossRefGoogle Scholar
Rönnmark, K. 1989 Geophys. Res. Lett. 16, 731.CrossRefGoogle Scholar
Rönnmark, K. 1990 Space Science Rev. 54, 1.CrossRefGoogle Scholar
Rönnmark, K. & Biro, T. 1992 J. Plasma Phys. 47, 479.CrossRefGoogle Scholar
Rönnmark, K. & Andre, M. 1991 J. Geophys. Res. 96, 17573.CrossRefGoogle Scholar
Rönnmark, K. & Larsson, J. 1988 J. Geophys. Res. 93, 1809.CrossRefGoogle Scholar
Sagdeev, R. Z. & Galeev, A. A. 1969 Nonlinear Plasma Theory. Benjamin.Google Scholar
Storey, L. R. O. & Lefeuvre, F. 1974 Space Res. 14, 381.Google Scholar
Suchy, K. 1982 J. Plasma Phys. 28, 185.CrossRefGoogle Scholar
Weinberg, S. 1962 Phys. Rev. 126, 1899.CrossRefGoogle Scholar