Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T03:40:10.636Z Has data issue: false hasContentIssue false

Simulations of two-dimensional magnetic electron drift vortex mode turbulence in plasmas

Published online by Cambridge University Press:  01 February 2009

DASTGEER SHAIKH
Affiliation:
Institute of Geophysics and Planetary Physics (IGPP), University of California, Riverside, CA 92521, USA (dastgeer@ucr.edu)
P. K. SHUKLA
Affiliation:
Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany (ps@tp4.rub.de)

Abstract

Simulations are performed to investigate the turbulent properties of nonlinearly interacting two-dimensional magnetic electron drift vortex (MEDV) modes in a non-uniform unmagnetized plasma. The relevant nonlinear equations governing the dynamics of the MEDV modes are the wave magnetic field and electron temperature perturbations in the presence of the equilibrium density and temperature gradients. The important nonlinearities come from the advection of the electron fluid velocity perturbation and the electron temperature, as well as from the nonlinear electron Lorentz force. Computer simulations of the governing equations for the nonlinear MEDV modes reveal the generation of streamer-like electron flows, such that the corresponding gradients in the direction of the inhomogeneities tend to flatten out. In contrast, the gradients in an orthogonal direction vary rapidly. Consequently, the inertial range energy spectrum in decaying MEDV mode turbulence exhibits a much steeper anisotropic spectral index. The magnetic structures in the MEDV mode turbulence produce non-thermal electron transport in our non-uniform plasma.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Jones, R. D. 1983 Magnetic surface waves in plasmas. Phys. Rev. Lett. 51, 1269.CrossRefGoogle Scholar
[2]Yu, M. Y. and Stenflo, L. 1985 Magnetic surface wave instabilities in plasmas. Phys. Fluid. 28, 3447.CrossRefGoogle Scholar
[3]Stenflo, L. and Yu, M. Y. 1986 Instabilities of baroclinically driven magnetic and acoustic waves. Phys. Fluid. 29, 2335.CrossRefGoogle Scholar
[4]Stenflo, L., Shukla, P. K. and Yu, M. Y. 1987 Decay of magnetic-electron-drift vortex modes in plasmas. Phys. Rev. A 36, 955.CrossRefGoogle ScholarPubMed
[5]Shukla, P. K., Yu, M. Y. and Stenflo, L. 1988 Stimulated Compton scattering of magnetic-electron-drift vortex waves off plasma ions. Phys. Rev. A 37, 2701.CrossRefGoogle ScholarPubMed
[6]Yu, M. Y., Shukla, P. K. and Spatschek, K. H. 1974 Scattering and modulational instabilities in magnetized plasmas. Zh. Naturforsch. A 29, 1736; Shukla, P. K., Yu M. Y. and Spatschek, K. H. 1975 Brillouin backscattering instability in magnetized plasmas. Phys. Fluid. 18, 265.CrossRefGoogle Scholar
Shukla, P. K. 1978 Modulational instability of whistler-mode signals. Natur. 274, 874. Stenflo, L. 1970 Kinetic theory of three-wave interaction in a magnetized plasma. J. Plasma Phys. 4, 585.CrossRefGoogle Scholar
[7]Sharma, R. P. and Shukla, P. K. 1983 Nonlinear effects at the upper-hybrid layer. Phys. Fluid. 26, 87.CrossRefGoogle Scholar
Murtaza, G. and Shukla, P. K. 1984 Nonlinear generation of electromagnetic waves in a magnetoplasma. J. Plasma Phys. 31, 423.CrossRefGoogle Scholar
Shukla, P. K. and Stenflo, L. 1985 Nonlinear propagation of electromagnetic waves in magnetized plasmas. Phys. Rev. A 30, 2110.CrossRefGoogle Scholar
Stenflo, L. and Shukla, P. K., 2000 Theory of stimulated scattering of large-amplitude waves. J. Plasma Phys. 64, 353.CrossRefGoogle Scholar
[8]Shukla, P. K., Yu, M. Y., Rahman, H. U. and Spatschek, K. H. 1981 Excitation of convective cells by drift waves. Phys. Rev. A 23, 321.CrossRefGoogle Scholar
Shukla, P. K., Yu, M. Y., Rahman, H. U. and Spatschek, K. H. 1984 Nonlinear convective motion in plasmas. Phys. Rep. 105, 227.CrossRefGoogle Scholar
Shukla, P. K. and Stenflo, L. 2002 Nonlinear interactions between drift waves and zonal flows. Eur. Phys. J. D 20, 103.Google Scholar
[9]Nycander, J., Pavlenko, V. P., Stenflo, L. 1987 Magnetic vortices in nonuniform plasmas. Phys. Fluids 30, 1367.CrossRefGoogle Scholar
[10]Shukla, P. K., Birk, G. T. and Bingham, R. 1995 Vortex streets driven by sheared flow and applications to black aurora. Geophys. Res. Lett. 22, 671.CrossRefGoogle Scholar
[11]Stenflo, L. 1987 Acoustic solitary vortices. Phys. Fluids 30, 3297.CrossRefGoogle Scholar
[12]Jucker, M. and Pavlenko, V. P. 2007 On the modulational stability of magnetic structures in electron drift turbulence. Phys. Plasma. 14, 102313.CrossRefGoogle Scholar
[13]Andrushchenko, Z. N., Jucker, M. and Pavlenko, V. P. 2008 Self-consistent model of electron drift mode turbulence. J. Plasma Phys. 74, 21.CrossRefGoogle Scholar
[14]Hasegawa, A. and Mima, K. 1977 Stationary spectrum of strong turbulence in magnetized nonuniform plasma. Phys. Rev. Lett. 39, 205.CrossRefGoogle Scholar
Mima, K. and Hasegawa, A. 1978 Nonlinear instability of electromagnetic drift waves. Phys. Fluid. 21, 81.CrossRefGoogle Scholar
[15]Hasegawa, A. and Wakatani, M. 1983 Plasma edge turbulence. Phys. Rev. Lett. 50, 682.CrossRefGoogle Scholar
Hasegawa, A. and Wakatani, M. 1987 Phys. Rev. Lett. 59, 1581.CrossRefGoogle Scholar
[16]Hasegawa, A. 1985 Self-organization processes in continuous media. Adv. Phys. 34, 1.CrossRefGoogle Scholar
[17]Horton, W. and Hasegawa, A. 1994 Quasi-two-dimensional dynamics of plasmas and fluids. Chao. 4, 227.CrossRefGoogle ScholarPubMed
[18]Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible Q2 viscous fluid for very large Reynolds' numbers. C. R. Acad. Sci. U.R.S.S. 30, 301, 538.Google Scholar
[19]Fyfe, D. and Montgomery, D. 1979 Possible inverse cascade behavior for drift-wave turbulence. Phys. Fluid. 22, 246.CrossRefGoogle Scholar