Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T03:55:41.208Z Has data issue: false hasContentIssue false

Surface waves in magnetized quantum electron-positron plasmas

Published online by Cambridge University Press:  05 June 2009

A.P. MISRA
Affiliation:
Department of Mathematics, Visva-Bharati University, Santiniketan-731 235, India (apmisra@visva-bharati.ac.in)
N.K. GHOSH
Affiliation:
Gangapuri Siksha Sadan, Purba Putiary, Kolkata-700 093, India
P.K. SHUKLA
Affiliation:
Institut für Theoretische Physik IV and Centre for Plasma Science and Astrophysics, Fakultät für Physik and Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany (ps@tp4.rub.de)

Abstract

The dispersion properties of electrostatic surface waves propagating along the interface between a quantum magnetoplasma composed of electrons and positrons, and vacuum are studied by using a quantum magnetohydrodynamic plasma model. The general dispersion relation for arbitrary orientation of the magnetic field and the propagation vector is derived and analyzed in some special cases of interest (viz. when the magnetic field is directed parallel and perpendicular to the boundary surface). It is found that the quantum effects facilitate the propagation of electrostatic surface modes in a dense magnetoplasma. The effect of the external magnetic field is found to increase the frequency of the quantum surface wave. The existence of a singular wave on the boundary surface is also proved, and its properties are analyzed numerically. It is shown that the new wave characteristics appear due to the Rayleigh type of the wave.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Misner, W., Thorne, K. and Wheeler, J. A. 1973 Gravitation. San Francisco: Freeman, p. 763.Google Scholar
[2]Rees, J. M. 1983 The Very Early Universe (ed. Gibbons, G. W., Hawking, S. W. and Siklas, S.). Cambridge: Cambridge University Press.Google Scholar
[3]Miller, H. R. and Witta, P. J. 1987 Active Galactic Nuclei. Berlin: Springer, p. 202.Google Scholar
Goldreich, P. and Julian, W. H. 1969 Astrophys. J. 157, 869.CrossRefGoogle Scholar
[4]Begelman, M. C., Blandford, R. D. and Rees, M. J. 1984 Rev. Mod. Phys. 56, 255.CrossRefGoogle Scholar
[5]Michel, F. C. 1982 Rev. Mod. Phys. 54, 1.CrossRefGoogle Scholar
Yu, M. Y., Shukla, P. K. and Stenflo, L. 1986 Astrophys. J. 309, L63.CrossRefGoogle Scholar
[6]Rees, M. J. 1971 Nature (London) 229, 312.CrossRefGoogle Scholar
[7]Burns, M. L. 1983 Positron-Electron Pairs in Astrophysics. New York: American Institute of Physics.Google Scholar
[8]Berezhiani, V., Tskhakaya, D. D. and Shukla, P. K. 1992 Phys. Rev. A 46, 6608.CrossRefGoogle Scholar
Marklund, M. and Shukla, P. K. 2006 Rev. Mod. Phys. 78, 591.CrossRefGoogle Scholar
[9]Shukla, P. K., Rao, N. N., Yu, M. Y. and Tsintsadze, N. L. 1986 Phys. Rep. 135, 1.CrossRefGoogle Scholar
[10]Ferreira, C. M. 1992 Microwave Discharges: Fundamentals and Applications. New York: Plenum Press.Google Scholar
[11]Shukla, P. K. and Stenflo, L. 2006 J. Plasma Phys. 72, 605.CrossRefGoogle Scholar
[12]Misra, A. P. 2007 Phys. Plasmas 14, 064501.CrossRefGoogle Scholar
[13]Shukla, P. K., Rao, N. N., Yu, M. Y. and Tsintsadze, N. L. 1986 Phys. Rep. 138, 1.CrossRefGoogle Scholar
[14]Roy, K., Misra, A. P. and Chatterjee, P. 2008 Phys. Plasmas 15, 032310.CrossRefGoogle Scholar
[15]Eliasson, B. and Shukla, P. K. 2006 Phys. Rep. 422, 225.CrossRefGoogle Scholar
[16]Gardner, C. L. and Ringhofer, C. 1995 Phys. Rev. E 53, 157.Google Scholar
Manfredi, G. 2005 Fields Inst. Commun. 46, 263.Google Scholar
Shukla, P. K. 2006 Phys. Lett. A 352, 242.CrossRefGoogle Scholar
Marklund, M., Brodin, G., Stenflo, L. and Liu, C. S. 2008 Eur. Phys. Lett. 84, 17006.CrossRefGoogle Scholar
[17]Jung, Y. F. 2001 Phys. Plasmas 8, 3842.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2006 Phys. Rev. Lett. 96, 245001.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2006 Phys. Rev. Lett. 99, 096401.CrossRefGoogle Scholar
Shaikh, D. and Shukla, P. K. 2007 Phys. Rev. Lett. 99 125002.CrossRefGoogle Scholar
Shukla, P. K. 2009 New J. Phys. 5, 92.Google Scholar
[18]Alexandrov, A. F., Bogdankevich, L. S. and Rukhadze, A. A. 1984 Principles of Plasma Electrodynamics. Berlin: Springer.CrossRefGoogle Scholar
[19]Stenflo, L. 1996 Phys. Scripta T63, 59.CrossRefGoogle Scholar
[20]Aliev, Yu. M., Schlüter, H. and Shivarova, A. 2000 Guided-Wave-Produced Plasmas. Berlin: Springer.CrossRefGoogle Scholar
[21]Stenflo, L. and Yu, M. Y. 2003 Phys. Plasmas 10, 912.CrossRefGoogle Scholar
[22]Lee, H. J. 2005 Phys. Plasmas 12, 094701.CrossRefGoogle Scholar
[23]Chang, I. S. and Jung, Y. D. 2008 Phys. Lett. A 9, 372.Google Scholar
[24]Lagar, M., Shukla, P. K. and Smolyakov, A. 2007 Phys. Plasmas 14, 124501.Google Scholar
[25]Fainberg, B. Ya and Gorbatenko, M. F. 1959 ZhTF 29, 549.Google Scholar
[26]Allis, W. P., Buchsbaum, S. J. and Bers, A. 1963 Waves in Anistropic Plasma. MIT Press: Cambridge, MA.Google Scholar
[27]Legendy, C. R. 1964 Phys. Rev. A 135, 1713.CrossRefGoogle Scholar
[28]Kaw, P. K. and Mcbride, J. B. 1970 Phys. Fluids 13, 1784.CrossRefGoogle Scholar
[29]Ivanov, S. T., Bogdanov, A. T. and Alexov, E. G.Phys. Scripta 42, 458.CrossRefGoogle Scholar
Ivanov, S. T. and Nikolaev, N. I. 1996 J. Phys. D: Appl. Phys. 29, 1007.CrossRefGoogle Scholar
[30]Ivanov, S. T., Nikolaev, N. I. and Thomae, R. W. 1998 Phys. Scripta 57, 645.CrossRefGoogle Scholar
[31]Landau, L. D. and Lifshitz, E. M. 1998 Statistical Physics. Oxford: Oxford University Press.Google Scholar
[32]Svensson, R. 1982 Astrophys. 258, 335.CrossRefGoogle Scholar
[33]Janaki, M. S. and Dasgupta, B. 1998 Phys. Plasmas 5, 4163.CrossRefGoogle Scholar
[34]Sedov, L. I. 1972 A Course in Continuum Mechanics. Groningen, Netherlands: Wolters-Noordhoff, Vol. II, ch. 7.Google Scholar