Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T11:31:04.286Z Has data issue: false hasContentIssue false

Three-dimensional steady-state magnetic reconnection

Published online by Cambridge University Press:  13 March 2009

M. Jardine
Affiliation:
Astronomy Centre, University of Sussex, Brighton BN1 9QH, U.K.

Abstract

A family of three-dimensional models of reconnection is presented in which the different members of the family are characterized by the vorticity with which plasma flows towards the reconnection site. The nature of this inflow also determines the size and speed of the outflow jet that carries reconnected field lines away from the reconnection site, and the shape of the MHD shocks that bound it. Flows with positive vorticity are of a flux pile-up type, for which the outflow jet is fastest and narrowest. Among those with negative vorticity is the three-dimensional analogue of Petschek reconnection. Not all combinations of vorticity and reconnection rate are possible; for those solutions with negative vorticity, there is a maximum reconnection rate. As the magnetic Reynolds number Rme or the current density is increased, this maximum is reduced and the possible types of solution become more polarized towards the two extremes of flux pile-up and slow compression regimes. Given a distribution of vorticities and inflow speeds, these models give the corresponding distribution of possible steady-state reconnection rates. As an illustrative example, we take Gaussian distributions of both to show that the resulting distribution is dominated by the flux pile-up regime.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biskamp, D. 1986 Phys. Fluids 29, 1520.CrossRefGoogle Scholar
Brandt, P. N., Scharmer, G. B., Ferguson, S., Shine, R. A., Tarbell, T. P., & Title, A. M. 1988 Nature 335, 238.CrossRefGoogle Scholar
Craig, I. J. D., & Watson, P. G. 1992 Astrophys. J. 393, 385.CrossRefGoogle Scholar
Deluca, E. E., & Craig, I. J. P. 1992 Astrophys. J. 390, 679.CrossRefGoogle Scholar
Forbes, T. G., & Priest, E. R. 1987 Rev. GeoPhys. 25, 1583.CrossRefGoogle Scholar
Gradshteyn, I. S., & Ryzhik, I. M. 1980 Tables of Integrals, Series, and Products, 4th edn. Academic.Google Scholar
Jardine, M., Allen, H. R., & Grundy, R. E. 1993 J. Geophys. Res. 98, 19409.CrossRefGoogle Scholar
Jardine, M., Allen, H. R., Grundy, R. E., & Priest, E. R. 1992 J. Geophys. Res. 97, 4199.CrossRefGoogle Scholar
Jardine, M., & Priest, E. R. 1988 J. Plasma Phys. 40, 143.CrossRefGoogle Scholar
Jardine, M., & Priest, E. R. 1989 J. Plasma Phys. 42, 111.CrossRefGoogle Scholar
Jardine, M., & Priest, E. R. 1990 J. Plasma Phys. 43, 141.CrossRefGoogle Scholar
Jeffrey, A., & Taniuti, T. 1964 Non-Linear Wave Propagation. Academic.Google Scholar
Jin, S-P., & Ip, W.-H. 1991 Phys. Fluids 3, 1927.CrossRefGoogle Scholar
Lee, L.-C., & Fu, Z. F. 1986 J. Geophys. Res. 91, 4551.CrossRefGoogle Scholar
Mangulis, V. 1965 Handbook of Series for Scientists and Engineers. Academic.Google Scholar
Petschek, H. E. 1964 Proceedings of AAS–NASA Symposium on the Physics of Solar Flares, p. 425. NASA Special Publication SP-50.Google Scholar
Priest, E. R., & Forbes, T. G. 1986 J. Ceophys. Res. 91, 5579.CrossRefGoogle Scholar
Priesst, E. R., & Forbes, T. G. 1992 J. Geophys. Res. 97, 16757.CrossRefGoogle Scholar
Rickard, G. J., & Craig, I. J. D. 1992 Phys. Fluids B 5, 956.CrossRefGoogle Scholar
Saffman, P.G. 1990 J. Fluid Mech. 212, 395.CrossRefGoogle Scholar
Sato, T. 1979 J. Geophys. Res. 84, 7177.CrossRefGoogle Scholar
Scholer, M. 1989 J. Geophys. Res. 94, 8805.CrossRefGoogle Scholar
Sheklley, M. J. 1993 J. Fluid Mech. 246, 613.CrossRefGoogle Scholar
Shivamoggi, B. K. 1985 Phys. Rep. 127, 99.CrossRefGoogle Scholar
Simon, G. W, Title, A. M., Topka, K. P., Tarbell, T. D., Shine, R. A., Ferguson, S. H., Zirin, H. & THE SOUP TEAM 1988 Astrophys. J. 327, 964.CrossRefGoogle Scholar
Strauss, H. R. 1988 Astrophys. J. 326, 412.CrossRefGoogle Scholar
Strauss, H. R. 1990 J. Geophys. Res. 95, 17145.CrossRefGoogle Scholar
Strauss, H. R. 1991 Astrophys. J. 381, 508.CrossRefGoogle Scholar
Strauss, H. R. 1993 Geophys. Res. Lett. 20, 325.CrossRefGoogle Scholar
Tarbell, T. P., Slater, G. L., Frank, Z. A., Shine, R. A., & Topka, K. P. 1991 Mechanisms of Chromospheric and Coronal Heating (ed. Ulmscheider, P., Priest, E. R. & Rosner, R.), p. 39. Springer.CrossRefGoogle Scholar
Tetreault, D. 1992 a J. Geophys. Res. 97, 8531.CrossRefGoogle Scholar
Tetreault, D. 1992 b J. Geophys. Res. 97, 8541.CrossRefGoogle Scholar
Ugai, M. 1991 J. Plasma Phys. 45, 251.CrossRefGoogle Scholar
Ugai, M., & Tsuda, T. 1977 J. Plasma Phys. 17, 337.CrossRefGoogle Scholar
Vasyliunas, V. M. 1975 Rev. Geophys. Space Phys. 13, 303.CrossRefGoogle Scholar
Yamada, M., Ono, Y., Hayakawa, A., & Katsurai, M. 1990 Phys. Rev. Lett. 65, 721.CrossRefGoogle Scholar
Yamada, M., Perkins, F. W., MacAulay, A. K., Ono, Y., & Katsurai, M. 1991 Phys. Fluids B 3, 2379.CrossRefGoogle Scholar
Yan, M., Lee, L. C., & Priest, E. R. 1992 J. Geophys. Res. 97, 8277CrossRefGoogle Scholar
Yan, M., Lee, L. C., & Priest, E. R. 1993 J. Geophys. Res. 98, 7593.CrossRefGoogle Scholar