Published online by Cambridge University Press: 16 May 2013
The driven wave formalism, as it was later applied to the solar coronal plasma processes, was first developed in our earlier work (Kaghashvili, E. Kh. 2007 Alfvén wave-driven compressional fluctuations in shear flows. Phys. Plasmas14, 44502) that presented the analytical solutions for the plasma density fluctuations. In the driven-wave formalism, we look for the short-term changes in the initial waveform due to the linear interaction of the initial natural mode of the system and the flow inhomogeneity. This formalism allows us to obtain the analytical solutions for the driven waves that are excited in the system. While a full set of driven wave solutions for magnetohydrodynamic variables in the cold plasma case were presented earlier (Kaghashvili, E. 2012c Driven wave-generated electric field in the solar corona. J. Geophys. Res. 117, A10103, doi:10.1029/2012JA018120), the purpose of this paper is to remove the cold-plasma restriction and to present the formal solutions for the initial linearly polarized Alfvén wave-driven fluctuations.