Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T03:23:11.444Z Has data issue: false hasContentIssue false

Bifurcations in an advanced two-chamber model for the edge plasma in a divertor tokamak

Published online by Cambridge University Press:  13 March 2009

Alkesh Punjabi
Affiliation:
Hampton University, Hampton, Virginia 23668, U.S.A.
Min Soe†
Affiliation:
Hampton University, Hampton, Virginia 23668, U.S.A.

Extract

An advanced two-chamber model for the main plasma scrape-off and the divertor chamber of a tokamak is constructed. It is studied in the framework of catastrophe theory. The model shows bifurcations in the topology of the equilibrium surfaces. The results are in qualitative agreement with some of the experimentally observed features of the H-mode transition.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, V. I. 1984 Catastrophe Theory. Springer.CrossRefGoogle Scholar
Bell, A. R., Evans, R. G. & Nicholas, D. J. 1981 Phys. Rev. Lett. 46, 423.CrossRefGoogle Scholar
Clause, P. J. & Balescu, R. 1982 Plasma Phys. 24, 1429.CrossRefGoogle Scholar
Galambos, J. et al. 1984 J. Nucl. Mater. 121, 205.CrossRefGoogle Scholar
Gilmore, R. 1981 Catastrophe Theory for Scientists and Engineers. Wiley-Interscienee.Google Scholar
Hopkins, G. R. & Rawls, J. M. 1979 Nucl. Technol. 43, 382.CrossRefGoogle Scholar
Hoshino, K. et al. 1988 Nucl. Fusion 28, 301.CrossRefGoogle Scholar
Kayes, S. M. et al. 1984 J. Nucl. Mater. 121, 115.Google Scholar
Keilhacker, M. 1987 Plasma Phys. Contr. Fusion 29, 1401.CrossRefGoogle Scholar
Keilhacker, M. et al. 1984 Plasma Phys. Contr. Fusion 26, 49.CrossRefGoogle Scholar
Keilhacker, M. et al. (ASDEX Team) 1985 Nucl. Fusion 25, 1045.CrossRefGoogle Scholar
Langer, W. D. & Singer, C. E. 1985 IEEE Trans. Plasma Sci. 13, 163.CrossRefGoogle Scholar
Luxon, J. et al. 1987 Proceedings of 11th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Kyoto, paper A-III-3.Google Scholar
Mahadavi, A. M. et al. 1981 Phys. Rev. Lett. 47, 1602.CrossRefGoogle Scholar
Morgan, J. & Harbour, P. 1980 Fusion Technology, vol. 2, p. 1187. Pergamon.Google Scholar
Nagami, M. et al. 1984 Nucl. Fusion 24, 183.CrossRefGoogle Scholar
Odajima, K. et al. 1987 Proceedings of 11th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Kyoto, paper A-III-2.Google Scholar
Ohyabu, N. et al. 1985 Nucl. Fusion 25, 49.CrossRefGoogle Scholar
Petravic, M., Post, D., Heifetz, D. & Schimidt, J. 1982 Phys. Rev. Lett. 48, 326.CrossRefGoogle Scholar
Post, D. & Lackner, K. 1986 Physics of Plasma-Wall Interactions in Controlled Fusion (ed. Post, D. & Behrisch, R.), p. 627. Plenum.CrossRefGoogle Scholar
Post, D., Langer, W. D. & Petravic, M. 1984 J. Nucl. Mater. 121, 171.CrossRefGoogle Scholar
Prinja, A. K. & Conn, R. W. 1984 J. Nucl. Mater. 128, 135.CrossRefGoogle Scholar
Senkogu, S. et al. 1987 Phys. Rev. Lett. 58, 450.Google Scholar
Shimada, M. et al. 1985 Japan Atomic Energy Research Institute Report. JAERI M-9470.Google Scholar
Singer, C. E. & Langer, W. D. 1983 Phys. Rev. A 28, 994.CrossRefGoogle Scholar
Tanga, A. et al. 1987 Proceedings of 11th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Kyoto, paper K-I-1.Google Scholar
Wagner, F. et al. 1982 Phys. Rev. Lett. 49, 1408.CrossRefGoogle Scholar