Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T10:46:55.085Z Has data issue: false hasContentIssue false

Bifurcations of ion acoustic solitary and periodic waves in an electron–positron–ion plasma through non-perturbative approach

Published online by Cambridge University Press:  09 April 2014

Asit Saha*
Affiliation:
Department of Mathematics, Sikkim Manipal Institute of Technology, Majitar, Rangpo, East-Sikkim 737136, India Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan 731235, India
Prasanta Chatterjee*
Affiliation:
Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan 731235, India

Abstract

Ion acoustic solitary waves and periodic waves in an unmagnetized plasma with superthermal (kappa-distributed) electrons and positrons are investigated through a non-perturbative approach. Model equations are transformed to a planar dynamical system. Then by using the bifurcations of phase portraits of this planar dynamical system, we have established that our model has solitary wave and periodic wave solutions. We have obtained two analytical solutions for these solitary and periodic waves depending on the parameters. From these solitary wave and periodic wave solutions, we have shown the combined effects of temperature ratio (σ) of electrons and positrons, spectral index (κ), speed of the traveling wave (v), and density ratio (p) of positrons and electrons on the characteristics of ion acoustic solitary and periodic waves. The spectral index, density ratio, speed of the traveling wave, and temperature ratio significantly affect the characteristics of ion acoustic solitary and periodic structures. The present study might be helpful to understand the salient features of nonlinear ion acoustic solitary and periodic structures in the interstellar medium.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boubakour, N., Tribeche, M. and Aoutou, K. 2009 Phys. Scr. 79, 065503.CrossRefGoogle Scholar
Chatterjee, P., Saha, T., Muniandy, S. V., Wong, C. S. and Roychoudhury, R. 2010 Phys. Plasmas 17, 012106.Google Scholar
Christon, S. P., Mitchell, D. G., Williams, D. J., Frank, L. A., Huang, C. Y. and Eastman, T. E. 1988 J. Geophys. Res. 93, 2562.CrossRefGoogle Scholar
El-Awady, E. I., El-Tantawy, S. A., Moslem, W. M. and Shukla, P. K. 2010 Phys. Lett. A, 374, 3216.Google Scholar
El-Tantawy, S. A., El-Bedwehy, N. A., Khan, S., Ali, S. and Moslem, W. M. 2012 Astrophys. Space Sci. 342, 425.CrossRefGoogle Scholar
Ghosh, D. K., Ghosh, U. N. and Chatterjee, P. 2013 J. Plasma Phys. 79, 37.CrossRefGoogle Scholar
Greaves, R. G. and Surko, C. M. 1995 Phys. Rev. Lett. 75, 3846.CrossRefGoogle Scholar
Guckenheimer, J. and Holmes, P. J. 1983 Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. New York, NY: Springer-Verlag.Google Scholar
Helander, P. and Ward, D. J. 2003 Phys. Rev. Lett. 90, 135004.Google Scholar
Jain, S. K. and Mishra, M. K. 2013 J. Plasma Phys. doi:10.1017/S0022377813000159.CrossRefGoogle Scholar
Krimigis, S. M., Carbary, J. F., Keath, E. P., Armstrong, T. P., Lanzerotti, L. J. and Gloeckler, G. 1983 J. Geophys. Res. 88, 8871.CrossRefGoogle Scholar
Lightman, A. P. 1982 Astrophys. J. 253, 842.Google Scholar
Maksimovic, M., Pierrard, V. and Lemaire, J. F. 1997 Astron. Astrophys. 324, 725.Google Scholar
Marphy, T. J., Strachan, J. and Rowan, W. L. 1986 Rev. Sci. Instrum. 57, 1862.Google Scholar
Michel, F. C. 1991 Theory of Neutron Star Magnetosphere. Chicago, IL: Chicago University Press.Google Scholar
Millar, H. R. and Witta, P. J. 1987 Active Galactic Nuclei. Berlin, Germany: Springer.Google Scholar
Moskalenko, I. V. and Strong, A. W. 1998 Astrophys. J. 493, 694.CrossRefGoogle Scholar
Pierrard, V. and Lemaire, J. J. 1996 Geophys. Res. 101, 7923.Google Scholar
Piran, T. 1999 Phys. Rep. 314, 575.Google Scholar
Popel, S. I., Vladimirov, S. V. and Shukla, P. K. 1995 Phys. Plasmas 2, 716.CrossRefGoogle Scholar
Rahman, A., Ali, S., Mushtaq, A. and Qamar, A. 2013 J. Plasma Phys. doi:10.1017/S0022377813000524.CrossRefGoogle Scholar
Saha, A. 2012 Commun. Nonlinear Sci. Numer. Simulat. 17, 3539.Google Scholar
Saha, A. and Chatterjee, P. 2013 Astrophys. Space Sci. doi:10.1007/s10509-013-1685-x.CrossRefGoogle Scholar
Saha, A. and Chatterjee, P. 2014 Astrophys. Space Sci. 349, 239.Google Scholar
Samanta, U. K., Saha, A. and Chatterjee, P. 2013a Phys. Plasma 20, 052111.Google Scholar
Samanta, U. K., Saha, A. and Chatterjee, P. 2013b Phys. Plasma 20, 022111.Google Scholar
Samanta, U. K., Saha, A. and Chatterjee, P. 2013c Astrophys. Space Sci. 347, 293.Google Scholar
Srinivas, J., Popel, S. I. and Shukla, P. K. 1996 J. Plasma Phys. 55 (Part 2), 209.Google Scholar
TandbergHansen, E. Hansen, E. and Emshie, A. G. 1988 The Physics of Solar Flares. Cambridge, UK: Cambridge University Press, 124 pp.Google Scholar
Vasyliunas, V. M. 1968 J. Geophys. Res. 73, 2839.Google Scholar