Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-14T17:13:43.404Z Has data issue: false hasContentIssue false

Comment on ‘Open-boundary spectral and flux-balance Vlasov simulation by A. Klimas and A. Viñas’

Published online by Cambridge University Press:  19 June 2020

Alexander J. Klimas*
Affiliation:
GPHI/UMBC, NASA/Goddard Space Flight Center, Greenbelt, MD 20770, USA
Adolfo. F. Viñas
Affiliation:
Department of Physics, Catholic University of America, Washington, DC 20064, USA NASA/Goddard Space Flight Center, Greenbelt, MD 20770, USA
*
Email address for correspondence: alex.klimas@nasa.gov

Abstract

An error in Klimas & Viñas (J. Plasma Phys., vol. 85 (6), 2019, 905850610) is noted and explained. It is shown that the results in Klimas and Viñas were unaffected by the error. Further ramifications for future non-periodic spectral simulations are discussed.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adcock, B., Hansen, A. C. & Shadrin, A. 2014 A stability barrier for reconstructions from Fourier samples. Siam J. Numer. Anal. 52 (1), 125139.CrossRefGoogle Scholar
Cheng, C. Z. & Knorr, G. 1976 Integration of Vlasov equation in configuration space. J. Comput. Phys. 22 (3), 330351.CrossRefGoogle Scholar
Gelb, A. & Tanner, J. 2006 Robust reprojection methods for the resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal. 20 (1), 325.CrossRefGoogle Scholar
Gottlieb, D. & Shu, C. W. 1997 On the Gibbs phenomenon and its resolution. Siam. Rev. 39 (4), 644668.CrossRefGoogle Scholar
Gottlieb, D., Shu, C. W., Solomonoff, A. & Vandeven, H. 1992 On the Gibb’s phenomenon. 1. Recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function. J. Comput. Appl. Maths 43 (1–2), 8198.CrossRefGoogle Scholar
Jung, J. H. & Shizgal, B. D. 2004 Generalization of the inverse polynomial reconstruction method in the resolution of the Gibbs phenomenon. J. Comput. Appl. Maths 172 (1), 131151.CrossRefGoogle Scholar
Jung, J. H. & Shizgal, B. D. 2005 Inverse polynomial reconstruction of two dimensional Fourier images. J. Sci. Comput. 25 (3), 367399.CrossRefGoogle Scholar
Jung, J. H. & Shizgal, B. D. 2007 On the numerical convergence with the inverse polynomial reconstruction method for the resolution of the Gibbs phenomenon. J. Comput. Phys. 224 (2), 477488.CrossRefGoogle Scholar
Klimas, A. 1987 A method for overcoming the velocity space filamentation problem in collisionless plasma model solutions. J. Comput. Phys. 68 (1), 202226.CrossRefGoogle Scholar
Klimas, A. & Farrell, W. M. 1994 A splitting algorithm for Vlasov simulation with filamentation filtration. J. Comput. Phys. 110 (1), 150163.CrossRefGoogle Scholar
Klimas, A. & Vinas, A. F. 2018 Absence of recurrence in Fourier–Fourier transformed Vlasov–Poisson simulations. J. Plasma Phys. 84 (4), 905840405.CrossRefGoogle Scholar
Klimas, A. & Vinas, A. F. 2019 Open-boundary spectral and flux-balance Vlasov simulation. J. Plasma Phys. 85 (6), 905850610.CrossRefGoogle Scholar
Shizgal, B. D. & Jung, J. H. 2003 Towards the resolution of the Gibbs phenomena. J. Comput Appl. Maths 161 (1), 4165.CrossRefGoogle Scholar