Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T15:15:27.824Z Has data issue: false hasContentIssue false

Compton scattering in particle-in-cell codes

Published online by Cambridge University Press:  27 October 2020

F. Del Gaudio*
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001Lisbon, Portugal
T. Grismayer*
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001Lisbon, Portugal
R. A. Fonseca
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001Lisbon, Portugal DCTI/ISCTE Instituto Universitário de Lisboa, 1649-026Lisboa, Portugal
L. O. Silva*
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001Lisbon, Portugal

Abstract

We present a Monte Carlo collisional scheme that models single Compton scattering between leptons and photons in particle-in-cell codes. The numerical implementation of Compton scattering can deal with macro-particles of different weights and conserves momentum and energy in each collision. Our scheme is validated through two benchmarks for which exact analytical solutions exist: the inverse Compton spectra produced by an electron scattering with an isotropic photon gas and the photon–electron gas equilibrium described by the Kompaneets equation. It provides new opportunities for numerical investigation of plasma phenomena where a significant population of high-energy photons is present in the system.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, T. 1993 Generalized scheme of the no-time-counter scheme for the DSMC in rarefied gas flow analysis. Comput. Fluids 22 (2), 253257.CrossRefGoogle Scholar
Bird, G. A. 1989 Perception of numerical methods in rarefied gasdynamics. Prog. Astronaut. Aeronaut. 117, 211226.Google Scholar
Birdsall, C. K. & Langdon, A. B. 1991 Plasma Physics via Computer Simulation. Taylor & Francis.CrossRefGoogle Scholar
Blackburn, T. G., Ridgers, C. P., Kirk, J. G. & Bell, A. R. 2014 Quantum radiation reaction in laser–electron-beam collisions. Phys. Rev. Lett. 112, 015001.CrossRefGoogle ScholarPubMed
Blumenthal, G. R. & Gould, R. J. 1970 Bremsstrahlung, synchrotron radiation, and Compton scattering of high-energy electrons traversing dilute gases. Rev. Mod. Phys. 42, 237270.CrossRefGoogle Scholar
Compton, A. H. 1923 A quantum theory of the scattering of x-rays by light elements. Phys. Rev. 21, 483502.CrossRefGoogle Scholar
Dawson, J. M. 1983 Particle simulation of plasmas. Rev. Mod. Phys. 55, 403447.CrossRefGoogle Scholar
Del Gaudio, F., Fonseca, R. A., Silva, L. O. & Grismayer, T. 2020 Plasma wakes driven by photon bursts via Compton scattering. Phys. Rev. Lett. arXiv:2003.04249v2.Google Scholar
Dreicer, H. 1964 Kinetic theory of an electron-photon gas. Phys. Fluids 7, 735.CrossRefGoogle Scholar
Evans, M. W. & Harlow, F. H. 1957 The particle-in-cell method for hydrodynamic calculations. Los Alamos Scientific Laboratory report LA-2139.Google Scholar
Frederiksen, J. T., Haugbølle, T. & Nordlund, Å. 2008 Trans-debye scale plasma modeling & stochastic GRB wakefield plasma processes. AIP Conf. Proc. 1054 (1), 8797.CrossRefGoogle Scholar
Gonoskov, A., Bastrakov, S., Efimenko, E., Ilderton, A., Marklund, M., Meyerov, I., Muraviev, A., Sergeev, A., Surmin, I. & Wallin, E. 2015 Extended particle-in-cell schemes for physics in ultrastrong laser fields: review and developments. Phys. Rev. E 92, 023305.CrossRefGoogle ScholarPubMed
Goudsmit, S. & Saunderson, J. L. 1940 Multiple scattering of electrons. Phys. Rev. 57, 2429.CrossRefGoogle Scholar
Grismayer, T., Vranic, M., Martins, J. L., Fonseca, R. A. & Silva, L. O. 2016 Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses. Phys. Plasmas 23 (5), 056706.CrossRefGoogle Scholar
Grismayer, T., Vranic, M., Martins, J. L., Fonseca, R. A. & Silva, L. O. 2017 Seeded qed cascades in counterpropagating laser pulses. Phys. Rev. E 95, 023210.CrossRefGoogle ScholarPubMed
Groot, S. R., Leeuwen, W. A. & van Weert, C. G. 1980 Relativistic Kinetic Theory: Principles and Applications. North Holland Publishing Company.Google Scholar
Haugbølle, T. 2005 Modelling relativistic astrophysics at the large and small scale. arXiv:astro-ph/0510292.Google Scholar
Haugbølle, T., Frederiksen, J. T. & Nordlund, Å. 2013 Photon-plasma: a modern high-order particle-in-cell code. Phys. Plasmas 20 (6), 062904.CrossRefGoogle Scholar
Higginson, D. P. 2017 A full-angle Monte-Carlo scattering technique including cumulative and single-event Rutherford scattering in plasmas. J. Comput. Phys. 349, 589603.CrossRefGoogle Scholar
Hockney, R. W. & Eastwood, J. W. 1988 Computer Simulation Using Particles. CRC Press.CrossRefGoogle Scholar
Jackson, J. D. 1999 Classical Electrodynamics, 3rd ed. John Wiley & Sons.Google Scholar
Jirka, M., Klimo, O., Bulanov, S. V., Esirkepov, T. Z., Gelfer, E., Bulanov, S. S., Weber, S. & Korn, G. 2016 Electron dynamics and ${\gamma }$ and ${e}^{{-}}{e}^{+}$ production by colliding laser pulses. Phys. Rev. E 93, 023207.CrossRefGoogle ScholarPubMed
Kawamura, E. & Birdsall, C. K. 2005 Effect of coulomb scattering on low-pressure high-density electronegative discharges. Phys. Rev. E 71, 026403.CrossRefGoogle ScholarPubMed
Klein, O. & Nishina, Y. 1923 The scattering of light by free electrons according to Dirac's new relativistic dynamics. Nature 122, 398399.CrossRefGoogle Scholar
Kompaneets, A. S. 1957 The establishment of thermal equilibrium between quanta and electrons. Sov. Phys. JETP 4, 730.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1975 The Classical Theory of Fields. Pergamon Press plc.Google Scholar
Larson, D. J. 2003 A Coulomb collision model for PIC plasma simulation. J. Comput. Phys. 188 (1), 123138.CrossRefGoogle Scholar
Lobet, M., d'Humiéres, E., Grech, M., Ruyer, C., Davoine, X. & Gremillet, L. 2016 Modeling of radiative and quantum electrodynamics effects in PIC simulations of ultra-relativistic laser-plasma interaction. J. Phys.: Conf. Ser. 688, 012058.Google Scholar
Miller, R. H. & Combi, M. R. 1994 A coulomb collision algorithm for weighted particle simulations. Geophys. Res. Lett. 21 (16), 17351738.CrossRefGoogle Scholar
Nanbu, K. 1997 Theory of cumulative small-angle collisions in plasmas. Phys. Rev. E 55, 46424652.CrossRefGoogle Scholar
Nerush, E. N., Kostyukov, I. Y., Fedotov, A. M., Narozhny, N. B., Elkina, N. V. & Ruhl, H. 2011 Laser field absorption in self-generated electron-positron pair plasma. Phys. Rev. Lett. 106, 035001.CrossRefGoogle ScholarPubMed
Peano, F., Marti, M., Silva, L. O. & Coppa, G. 2009 Statistical kinetic treatment of relativistic binary collisions. Phys. Rev. E 79, 025701.CrossRefGoogle ScholarPubMed
Peyraud, J. 1968 a Théorie cinétique des plasmas, interaction matiére-rayonnement: I. J. Phys. 29, 88.CrossRefGoogle Scholar
Peyraud, J. 1968 b Théorie cinétique des plasmas, interaction matiére-rayonnement: II. J. Phys. 29, 306.CrossRefGoogle Scholar
Peyraud, J. 1968 c Théorie cinétique des plasmas, interaction matiére-rayonnement: III. J. Phys. 29, 872.CrossRefGoogle Scholar
Ridgers, C. P., Brady, C. S., Duclous, R., Kirk, J. G., Bennett, K., Arber, T. D., Robinson, A. P. L. & Bell, A. R. 2012 Dense electron-positron plasmas and ultraintense ${\gamma }$ rays from laser-irradiated solids. Phys. Rev. Lett. 108, 165006.CrossRefGoogle ScholarPubMed
Sentoku, Y. & Kemp, A. J. 2008 Numerical methods for particle simulations at extreme densities and temperatures: weighted particles, relativistic collisions and reduced currents. J. Comput. Phys. 227 (14), 68466861.CrossRefGoogle Scholar
Sherlock, M. 2008 A Monte-Carlo method for coulomb collisions in hybrid plasma models. J. Comput. Phys. 227 (4), 22862292.CrossRefGoogle Scholar
Sunyaev, R. A. & Zel'dovich, Y. B. 1980 Microwave background radiation as a probe of the contemporary structure and history of the universe. Annu. Rev. Astron. Astrophys. 18, 537.CrossRefGoogle Scholar
Takizuka, T. & Abe, H. 1977 A binary collision model for plasma simulation with a particle code. J. Comput. Phys. 25 (3), 205219.CrossRefGoogle Scholar
Thomson, J. J. 1906 Conduction of Electricity through Gases. University Press.Google Scholar
Turrell, A. E., Sherlock, M. & Rose, S. J. 2015 Self-consistent inclusion of classical large-angle coulomb collisions in plasma Monte Carlo simulations. J. Comput. Phys. 299, 144155.CrossRefGoogle Scholar
Vahedi, V. & Surendra, M. 1995 A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges. Comput. Phys. Commun. 87 (1), 179198.CrossRefGoogle Scholar
Vranic, M., Grismayer, T., Fonseca, R. A. & Silva, L. O. 2016 a Electron–positron cascades in multiple-laser optical traps. Plasma Phys. Control. Fusion 59 (1), 014040.CrossRefGoogle Scholar
Vranic, M., Grismayer, T., Fonseca, R. A. & Silva, L. O. 2016 b Quantum radiation reaction in head-on laser-electron beam interaction. New J. Phys. 18 (7), 073035.CrossRefGoogle Scholar
Vranic, M., Grismayer, T., Martins, J. L., Fonseca, R. A. & Silva, L. O. 2015 Particle merging algorithm for PIC codes. Comput. Phys. Commun. 191, 6573.CrossRefGoogle Scholar
Vranic, M., Martins, J. L., Vieira, J., Fonseca, R. A. & Silva, L. O. 2014 All-optical radiation reaction at $10^{21}\ \mathrm {W}/\mathrm {cm}^{2}$. Phys. Rev. Lett. 113, 134801.CrossRefGoogle Scholar
Wilson, G. R., Horwitz, J. L. & Lin, J. 1992 A semikinetic model for early stage plasmasphere refilling: 1, effects of coulomb collisions. J. Geophys. Res. 97 (A2), 11091119.CrossRefGoogle Scholar